1
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
2
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|
4
|
Detection strategies for superoxide anion: A review. Talanta 2022; 236:122892. [PMID: 34635271 DOI: 10.1016/j.talanta.2021.122892] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. Superoxide anion (O2-.), one kind of ROS, is the single-electron reduction product of oxygen molecules, which mainly exists in plants and animals, and is closely related to many inflammatory diseases. In the field of biomedicine, with the deepening understanding of superoxide anion, more and more detection methods have been developed. This review mainly introduces the detection techniques for superoxide anion in recent years.
Collapse
|
5
|
Malikova NP, Eremeeva EV, Gulnov DV, Natashin PV, Nemtseva EV, Vysotski ES. Specific Activities of Hydromedusan Ca 2+ -Regulated Photoproteins. Photochem Photobiol 2021; 98:275-283. [PMID: 34727376 DOI: 10.1111/php.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Dmitry V Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| |
Collapse
|
6
|
RedquorinXS Mutants with Enhanced Calcium Sensitivity and Bioluminescence Output Efficiently Report Cellular and Neuronal Network Activities. Int J Mol Sci 2020; 21:ijms21217846. [PMID: 33105848 PMCID: PMC7660078 DOI: 10.3390/ijms21217846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.
Collapse
|
7
|
Eremeeva EV, Jiang T, Malikova NP, Li M, Vysotski ES. Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents. Int J Mol Sci 2020; 21:E5446. [PMID: 32751691 PMCID: PMC7432523 DOI: 10.3390/ijms21155446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.
Collapse
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Tianyu Jiang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Natalia P. Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| |
Collapse
|
8
|
Ding BW, Eremeeva EV, Vysotski ES, Liu YJ. Luminescence Activity Decreases When v-coelenterazine Replaces Coelenterazine in Calcium-Regulated Photoprotein-A Theoretical and Experimental Study. Photochem Photobiol 2020; 96:1047-1060. [PMID: 32416626 DOI: 10.1111/php.13280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 11/27/2022]
Abstract
Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Abstract
Although the superoxide anion (O2-·) is generated during normal cellular respiration and has fundamental roles in a wide range of cellular processes, such as cell proliferation, migration, apoptosis, and homeostasis, its dysregulation is associated with a variety of diseases. Regarding these prominent roles in biological systems, the development of accurate methods for quantification of superoxide anion has attracted tremendous research attention. Here, we evaluated aequorin, a calcium-dependent photoprotein, as a potential bioluminescent reporter protein of superoxide anion. The mechanism is based on the measurement of aequorin bioluminescence, where the lower the concentration of coelenterazine under the oxidation of superoxide anion, the lower the amount aequorin regeneration, leading to a decrease in bioluminescence. The bioluminescence intensity of aequorin was proportional to the concentration of superoxide anion in the range from 4 to 40 000 pM with a detection limit (S/N = 3) of 1.2 pM, which was 5000-fold lower than those of the chemiluminescence methods. The proposed method exhibited high sensitivity and has been successfully applied to the determination of superoxide anion in the plant cell samples. The results could suggest a photoprotein-based bioluminescence system as a highly sensitive, specific, and simple bioluminescent probe for in vitro detection of superoxide anion.
Collapse
Affiliation(s)
- Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| | - Fahimeh Ghavamipour
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences , Tarbiat Modares University , Tehran 14115-154 , Iran
| |
Collapse
|
10
|
Gao M, Ding BW, Liu YJ. Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad - a QM/MM study. Photochem Photobiol Sci 2019; 18:1823-1832. [PMID: 31165126 DOI: 10.1039/c9pp00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence (FL) of calcium-discharged photoprotein (CaDP) can be altered by easily mutating CaDP without modifying coelenteramide (CLM), which is the decarboxylation product of coelenterazine in calcium-regulated photoprotein. The His22-Phe88-Trp92 triad (the ordering numbers of three amino acids are sorted by a crystal structure (PDB: 2F8P) of calcium-discharged obelin, i.e., CaDP-obelin) is closely related to CaDP-obelin FL, since it exists in close proximity to the 5-p-hydroxyphenyl of CLM. Therefore, it is important to thoroughly investigate how the mutations of this triad affect the emission color of CaDP-obelin FL. In this study, by mutating wild-type CaDP-obelin (WT) at the His22-Phe88-Trp92 triad, we theoretically constructed its nine mutants of separable FL colors. Through combined quantum mechanics and molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations, the influence of the mutations of this triad on the CaDP-obelin FL was analyzed considering the H-bond effect and the charge effect. This study demonstrated that the mutations at the His22-Phe88-Trp92 triad redistribute the charges on the D-π-A molecule, CLM, change the charge transfer from the D to the (π + A) moiety, and thereby alter the FL emission. Appending more negative charges on the phenolate moiety of CLM benefits the FL redshift.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| | - Bo-Wen Ding
- School of Environment, Beijing Normal University, Beijing, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
11
|
Burakova LP, Vysotski ES. Recombinant Ca 2+-regulated photoproteins of ctenophores: current knowledge and application prospects. Appl Microbiol Biotechnol 2019; 103:5929-5946. [PMID: 31172204 DOI: 10.1007/s00253-019-09939-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022]
Abstract
Bright bioluminescence of ctenophores is conditioned by Ca2+-regulated photoproteins. Although they share many properties characteristic of hydromedusan Ca2+-regulated photoproteins responsible for light emission of marine animals belonging to phylum Cnidaria, a substantial distinction still exists. The ctenophore photoproteins appeared to be extremely sensitive to light-they lose the ability for bioluminescence on exposure to light over the entire absorption spectrum. Inactivation is irreversible because keeping the inactivated photoprotein in the dark does not recover its activity. The capability to emit light can be restored only by incubation of inactivated photoprotein with coelenterazine in the dark at alkaline pH in the presence of oxygen. Although these photoproteins were discovered many years ago, only the cloning of cDNAs encoding these unique bioluminescent proteins in the early 2000s has provided a new impetus for their studies. To date, cDNAs encoding Ca2+-regulated photoproteins from four different species of luminous ctenophores have been cloned. The amino acid sequences of ctenophore photoproteins turned out to completely differ from those of hydromedusan photoproteins (identity less than 29%) though also similar to them having three EF-hand Ca2+-binding sites. At the same time, these photoproteins reveal the same two-domain scaffold characteristic of hydromedusan photoproteins. This review is an attempt to systemize and critically evaluate the data scattered through various articles regarding the structural features of recombinant light-sensitive Ca2+-regulated photoproteins of ctenophores and their bioluminescent and physicochemical properties as well as to compare them with those of hydromedusan photoproteins. In addition, we also discuss the prospects of their biotechnology applications.
Collapse
Affiliation(s)
- Lyudmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia.
| |
Collapse
|
12
|
Yu X, Scott D, Dikici E, Joel S, Deo S, Daunert S. Multiplexing cytokine analysis: towards reducing sample volume needs in clinical diagnostics. Analyst 2019; 144:3250-3259. [PMID: 31049499 PMCID: PMC11401509 DOI: 10.1039/c9an00297a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Abstract
The trend for improved more precise diagnostics and management of disease heavily relies on the measurement of panels of biomarkers in physiological samples of patients. Ideally, the ultimate goal would be to detect as many clinically relevant biomarkers as possible in a single drop of blood, achieving quick, sensitive, reproducible, and affordable detection in small volume physiological samples. Bioluminescent (BL) proteins provide many of the desired characteristics required for such labels, including detection at extremely low concentrations, no interference from physiological fluids leading to excellent detection limits, and compatibility with many miniaturized systems. However, to date the use of BL proteins has been restricted by their limited multiplexing capabilities. BL proteins typically exhibit a single emission profile and decay kinetics making the simultaneous detection of multiple analytes difficult. Recent progresses in this area include the use of two different engineered luminescent proteins to achieve resolved signals via one-dimensional time resolution. This approach, however, to date only lead to a dual analyte detection. Herein, we have demonstrated that using a two-dimensional approach that combines both temporal and spatial resolution, we can expand the multiplexing capabilities of bioluminescent proteins. To that end, the photoprotein aequorin (AEQ) has been employed for the simultaneous detection of three separate analytes in a single well, differentiated through the use of three discrete time/wavelength windows. Through a combination of site-specific mutations and synthetic coelenterazines "semi-synthetic" AEQ variants have been developed with altered emission profiles and decay kinetics. In this study, two AEQ mutant proteins were genetically conjugated to three pro-inflammatory cytokines (tumor necrosis factor alpha, interleukins 6 and 8) resulting in AEQ-labeled cytokines. These fusion proteins were combined with synthetic coelenterazines resulting in proteins with differing emission maxima and half-lives to allow for the simultaneous detection of all three cytokines in a single sample. The validity of the assay was demonstrated in serum by employing human physiological samples and comparing our results with commercially available individual tests for each of the three cytokines.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Markova SV, Larionova MD, Vysotski ES. Shining Light on the Secreted Luciferases of Marine Copepods: Current Knowledge and Applications. Photochem Photobiol 2019; 95:705-721. [PMID: 30585639 DOI: 10.1111/php.13077] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Copepod luciferases-a family of small secretory proteins of 18.4-24.3 kDa, including a signal peptide-are responsible for bright secreted bioluminescence of some marine copepods. The copepod luciferases use coelenterazine as a substrate to produce blue light in a simple oxidation reaction without any additional cofactors. They do not share sequence or structural similarity with other identified bioluminescent proteins including coelenterazine-dependent Renilla and Oplophorus luciferases. The small size, strong luminescence activity and high stability, including thermostability, make secreted copepod luciferases very attractive candidates as reporter proteins which are particularly useful for nondisruptive reporter assays and for high-throughput format. The most known and extensively investigated representatives of this family are the first cloned GpLuc and MLuc luciferases from copepods Gaussia princeps and Metridia longa, respectively. Immediately after cloning, these homologous luciferases were successfully applied as bioluminescent reporters in vivo and in vitro, and since then, the scope of their applications continues to grow. This review is an attempt to systemize and critically evaluate the data scattered through numerous articles regarding the main structural features of copepod luciferases, their luminescent and physicochemical properties. We also review the main trends of their application as bioluminescent reporters in cell and molecular biology.
Collapse
Affiliation(s)
- Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Marina D Larionova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
14
|
Eremeeva EV, Vysotski ES. Exploring Bioluminescence Function of the Ca2+
-regulated Photoproteins with Site-directed Mutagenesis. Photochem Photobiol 2018; 95:8-23. [DOI: 10.1111/php.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| |
Collapse
|
15
|
Bioluminescence and kinetic aspects of double mutated aequorin variants. Int J Biol Macromol 2018; 112:163-168. [DOI: 10.1016/j.ijbiomac.2018.01.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/21/2022]
|
16
|
Bioluminescent and structural features of native folded Gaussia luciferase. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:309-317. [PMID: 29754049 DOI: 10.1016/j.jphotobiol.2018.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/18/2018] [Accepted: 04/30/2018] [Indexed: 01/20/2023]
Abstract
The secreted luciferases responsible for light emission of marine copepods have gained popularity for being used in noninvasive imaging of intracellular events. The secreted luciferase of copepod Gaussia princeps is a one-subunit protein catalyzing coelenterazine oxidation to emit blue light. It consists of the N-terminal variable part that bears a signal peptide for secretion and the C-terminal catalytic domain containing ten highly conserved Cys residues supposing the existence of up to five SS bonds. Despite wide application of Gaussia luciferase in biomedical research, its biochemical properties are still insufficiently studied due to the general problem of obtaining the proper folded Cys-rich proteins in bacterial cells. Here we report the properties of the proper folded Gaussia luciferase produced in insect cells using baculovirus expression system. This high purity luciferase reveals the highest activity at 15-20 °C but retains only ~20% activity at 37 °C that may hamper its application for in vivo assays. The maximum of bioluminescent activity of GpLuc is found at NaCl concentrations in the range of 1.0-1.5 M and, furthermore, a high NaCl concentration enhances luciferase stability to thermal denaturation, i.e. Gaussia luciferase displays the features characteristic of halophilic enzymes. The studies on bioluminescence kinetics at different coelenterazine concentrations obviously show a positive cooperativity of Gaussia luciferase with coelenterazine (Hill coefficient - 1.8 ± 0.2; K0.5-2.14 ± 0.17 μM). We suggest this effect to be rather due to the so-called kinetic cooperativity conditioned by conformational changes in response to substrate binding than to the presence of two catalytic sites.
Collapse
|
17
|
Shakhmin A, Hall MP, Machleidt T, Walker JR, Wood KV, Kirkland TA. Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc. Org Biomol Chem 2018; 15:8559-8567. [PMID: 28972606 DOI: 10.1039/c7ob01985h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the synthesis and characterization of novel coelenterazine analogues that demonstrate a red-shift in their bioluminescent emission with NanoLuc luciferase. These coelenterazines can be tuned to shift the bioluminescent emission from blue light in the native system. In particular, direct attachment of an aryl moiety to the imidazopyrazinone core of furimazine at the C8 position provides a significant red-shift while maintaining reasonable light output. In addition, modification of the C6 aryl moiety provided additive red-shifts, and by combining the most promising modifications we report a coelenterazine with a maximum emission near 600 nm with NanoLuc. Finally, we show that this new bioluminescent system is capable of efficient BRET to far-red fluorophores. We anticipate these new principles of NanoLuc substrate design will impact applications that depend on shifting the colour of emission to the red, most notably in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Anton Shakhmin
- Promega Biosciences LLC, 277 Granada Dr., San Luis Obispo, CA 93401, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chemi- and Bioluminescence of Cyclic Peroxides. Chem Rev 2018; 118:6927-6974. [PMID: 29493234 DOI: 10.1021/acs.chemrev.7b00649] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioluminescence is a phenomenon that has fascinated mankind for centuries. Today the phenomenon and its sibling, chemiluminescence, have impacted society with a number of useful applications in fields like analytical chemistry and medicine, just to mention two. In this review, a molecular-orbital perspective is adopted to explain the chemistry behind chemiexcitation in both chemi- and bioluminescence. First, the uncatalyzed thermal dissociation of 1,2-dioxetane is presented and analyzed to explain, for example, the preference for triplet excited product states and increased yield with larger nonreactive substituents. The catalyzed fragmentation reaction and related details are then exemplified with substituted 1,2-dioxetanone species. In particular, the preference for singlet excited product states in that case is explained. The review also examines the diversity of specific solutions both in Nature and in artificial systems and the difficulties in identifying the emitting species and unraveling the color modulation process. The related subject of excited-state chemistry without light absorption is finally discussed. The content of this review should be an inspiration to human design of new molecular systems expressing unique light-emitting properties. An appendix describing the state-of-the-art experimental and theoretical methods used to study the phenomena serves as a complement.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden
| | - Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Stefan Schramm
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Romain Berraud-Pache
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Isabelle Navizet
- Université Paris-Est , Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM , 5 bd Descartes , 77454 Marne-la-Vallée , France
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 , Valencia , Spain
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil
| | - Roland Lindh
- Department of Chemistry-Ångström , Uppsala University , P.O. Box 538, SE-751 21 Uppsala , Sweden.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
19
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Bioluminescent and biochemical properties of Cys-free Ca 2+ -regulated photoproteins obelin and aequorin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:97-105. [DOI: 10.1016/j.jphotobiol.2017.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022]
|
21
|
Molakarimi M, Mohseni A, Taghdir M, Pashandi Z, Gorman MA, Parker MW, Naderi-Manesh H, Sajedi RH. QM/MM simulations provide insight into the mechanism of bioluminescence triggering in ctenophore photoproteins. PLoS One 2017; 12:e0182317. [PMID: 28777808 PMCID: PMC5544205 DOI: 10.1371/journal.pone.0182317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022] Open
Abstract
Photoproteins are responsible for light emission in a variety of marine ctenophores and coelenterates. The mechanism of light emission in both families occurs via the same reaction. However, the arrangement of amino acid residues surrounding the chromophore, and the catalytic mechanism of light emission is unknown for the ctenophore photoproteins. In this study, we used quantum mechanics/molecular mechanics (QM/MM) and site-directed mutagenesis studies to investigate the details of the catalytic mechanism in berovin, a member of the ctenophore family. In the absence of a crystal structure of the berovin-substrate complex, molecular docking was used to determine the binding mode of the protonated (2-hydroperoxy) and deprotonated (2-peroxy anion) forms of the substrate to berovin. A total of 13 mutants predicted to surround the binding site were targeted by site-directed mutagenesis which revealed their relative importance in substrate binding and catalysis. Molecular dynamics simulations and MM-PBSA (Molecular Mechanics Poisson-Boltzmann/surface area) calculations showed that electrostatic and polar solvation energy are +115.65 and -100.42 kcal/mol in the deprotonated form, respectively. QM/MM calculations and pKa analysis revealed the deprotonated form of substrate is unstable due to the generation of a dioxetane intermediate caused by nucleophilic attack of the substrate peroxy anion at its C3 position. This work also revealed that a hydrogen bonding network formed by a D158- R41-Y204 triad could be responsible for shuttling the proton from the 2- hydroperoxy group of the substrate to bulk solvent.
Collapse
Affiliation(s)
- Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zaiddodine Pashandi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael A. Gorman
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael W. Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (RHS); (MNM)
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (RHS); (MNM)
| |
Collapse
|
22
|
Bakayan A, Domingo B, Vaquero CF, Peyriéras N, Llopis J. Fluorescent Protein-photoprotein Fusions and Their Applications in Calcium Imaging. Photochem Photobiol 2017; 93:448-465. [PMID: 27925224 DOI: 10.1111/php.12682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Calcium-activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP-aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.
Collapse
Affiliation(s)
- Adil Bakayan
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Cecilia F Vaquero
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Nadine Peyriéras
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
23
|
Larionova MD, Markova SV, Vysotski ES. Tyr72 and Tyr80 are Involved in the Formation of an Active Site of a Luciferase of CopepodMetridia longa. Photochem Photobiol 2017; 93:503-510. [DOI: 10.1111/php.12694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Marina D. Larionova
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
24
|
Eremeeva EV, Bartsev SI, van Berkel WJH, Vysotski ES. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca2+-regulated Photoproteins of Different Organisms. Photochem Photobiol 2016; 93:495-502. [DOI: 10.1111/php.12664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Sergey I. Bartsev
- Theoretical Biophysics Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | | | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| |
Collapse
|
25
|
Burakova LP, Natashin PV, Markova SV, Eremeeva EV, Malikova NP, Cheng C, Liu ZJ, Vysotski ES. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:286-297. [PMID: 27395792 DOI: 10.1016/j.jphotobiol.2016.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia.
| |
Collapse
|
26
|
Burakova LP, Stepanyuk GA, Eremeeva EV, Vysotski ES. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin. Photochem Photobiol Sci 2016; 15:691-704. [DOI: 10.1039/c6pp00050a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We suggest that in the inner cavity of ctenophore photoproteins coelenterazine is bound as a 2-peroxy anion which is stabilized owing to Coulomb interaction with a guanidinium group of R41 paired with Y204.
Collapse
Affiliation(s)
- Ludmila P. Burakova
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Galina A. Stepanyuk
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Elena V. Eremeeva
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Eugene S. Vysotski
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| |
Collapse
|
27
|
Grinstead K, Joel S, Zingg JM, Dikici E, Daunert S. Enabling Aequorin for Biotechnology Applications Through Genetic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015:149-179. [PMID: 26475468 DOI: 10.1007/10_2015_336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, luminescent proteins have been studied for their potential application in a variety of detection systems. Bioluminescent proteins, which do not require an external excitation source, are especially well-suited as reporters in analytical detection. The photoprotein aequorin is a bioluminescent protein that can be engineered for use as a molecular reporter under a wide range of conditions while maintaining its sensitivity. Herein, the characteristics of aequorin as well as the engineering and production of aequorin variants and their impact on signal detection in biological systems are presented. The structural features and activity of aequorin, its benefits as a label for sensing and applications in highly sensitive detection, as well as in gaining insight into biological processes are discussed. Among those, focus has been placed on the highly sensitive calcium detection in vivo, in vitro DNA and small molecule sensing, and development of in vivo imaging technologies. Graphical Abstract.
Collapse
Affiliation(s)
- Kristen Grinstead
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Smita Joel
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
28
|
Mahdavi A, Sajedi RH, Hosseinkhani S, Taghdir M. Hyperactive Arg39Lys mutated mnemiopsin: implication of positively charged residue in chromophore binding cavity. Photochem Photobiol Sci 2015; 14:792-800. [DOI: 10.1039/c4pp00191e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mnemiopsin, a Ca2+-regulated photoprotein isolated fromMnemiopsis leidyi, belongs to the family of ctenophore photoproteins. While there are no charged amino acid residues in the coelenterazine binding cavity of cnidarian photoproteins, ctenophore photoproteins have a positively charged residue (Arg) in this region.
Collapse
Affiliation(s)
- Atiyeh Mahdavi
- Department of Biological Sciences
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45195-1159
- Iran
| | - Reza H. Sajedi
- Department of Biochemistry
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| | - Saman Hosseinkhani
- Department of Biochemistry
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| | - Majid Taghdir
- Department of Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran 14115-154
- Iran
| |
Collapse
|
29
|
Bakayan A, Domingo B, Miyawaki A, Llopis J. Imaging Ca(2+) activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflugers Arch 2014; 467:2031-42. [PMID: 25355614 PMCID: PMC4537489 DOI: 10.1007/s00424-014-1639-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/04/2023]
Abstract
Ca2+ monitoring with aequorin is an established bioluminescence technique, whereby the photoprotein emits blue light when it binds to Ca2+. However, aequorin’s blue emission and low quantum yield limit its application for in vivo imaging because blue-green light is greatly attenuated in animal tissues. In earlier work, aequorin was molecularly fused with green, yellow, and red fluorescent proteins, producing an emission shift through bioluminescence resonance energy transfer (BRET). We have previously shown that the chimera tandem dimer Tomato-aequorin (tdTA) emits red light in mammalian cells and across the skin and other tissues of mice [1]. In this work, we varied the configuration of the linker in tdTA to maximize energy transfer. One variant, named Redquorin, improved BRET from aequorin to tdTomato to almost a maximum value, and the emission above 575 nm exceeded 73 % of total counts. By pairing Redquorin with appropriate synthetic coelenterazines, agonist-induced and spontaneous Ca2+ oscillations in single HEK-293 cells were imaged. In addition, we also imaged Ca2+ transients associated with twitching behavior in developing zebrafish embryos expressing Redquorin during the segmentation period. Furthermore, the emission profile of Redquorin resulted in significant luminescence crossing a blood sample, a highly absorbing tissue. This new tool will facilitate in vivo imaging of Ca2+ from deep tissues of animals.
Collapse
Affiliation(s)
- Adil Bakayan
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad Castilla-La Mancha, C/ Almansa 14, 02008, Albacete, Spain
| | | | | | | |
Collapse
|
30
|
Qu X, Rowe L, Dikici E, Ensor M, Daunert S. Aequorin mutants with increased thermostability. Anal Bioanal Chem 2014; 406:5639-43. [PMID: 25084737 DOI: 10.1007/s00216-014-8039-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 12/01/2022]
Abstract
Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.
Collapse
Affiliation(s)
- Xiaoge Qu
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | | | | | | |
Collapse
|
31
|
Characterization of hydromedusan Ca2+-regulated photoproteins as a tool for measurement of Ca2+concentration. Anal Bioanal Chem 2014; 406:5715-26. [DOI: 10.1007/s00216-014-7986-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/30/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
|
32
|
Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues. Anal Bioanal Chem 2014; 406:2695-707. [DOI: 10.1007/s00216-014-7656-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/28/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
33
|
Natashin PV, Ding W, Eremeeva EV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction. ACTA ACUST UNITED AC 2014; 70:720-32. [DOI: 10.1107/s1399004713032434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 11/11/2022]
Abstract
Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Collapse
|
34
|
Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 2014; 281:1432-1445. [DOI: 10.1111/febs.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel V. Natashin
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens GA USA
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- iHuman Institute; ShanghaiTech University; Shanghai China
| |
Collapse
|
35
|
Tricoire L, Lambolez B. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter. Methods Mol Biol 2014; 1098:33-45. [PMID: 24166366 DOI: 10.1007/978-1-62703-718-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetically encoded indicators are valuable tools to study intracellular signaling cascades in real time using fluorescent or bioluminescent imaging techniques. Imaging of Ca(2+) indicators is widely used to record transient intracellular Ca(2+) increases associated with bioelectrical activity. The natural bioluminescent Ca(2+) sensor aequorin has been historically the first Ca(2+) indicator used to address biological questions. Aequorin imaging offers several advantages over fluorescent reporters: it is virtually devoid of background signal; it does not require light excitation and interferes little with intracellular processes. Genetically encoded sensors such as aequorin are commonly used in dissociated cultured cells; however it becomes more challenging to express them in differentiated intact specimen such as brain tissue. Here we describe a method to express a GFP-aequorin (GA) fusion protein in pyramidal cells of neocortical acute slices using recombinant Sindbis virus. This technique allows expressing GA in several hundreds of neurons on the same slice and to perform the bioluminescence recording of Ca(2+) transients in single neurons or multiple neurons simultaneously.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neurobiologie des processus adaptatifs, UMR7102, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
36
|
Stepanyuk GA, Liu ZJ, Burakova LP, Lee J, Rose J, Vysotski ES, Wang BC. Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2139-46. [DOI: 10.1016/j.bbapap.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022]
|
37
|
Li ZS, Zou LY, Min CG, Ren AM. The effect of micro-environment on luminescence of aequorin: The role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:94-9. [DOI: 10.1016/j.jphotobiol.2013.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
|
38
|
Chen SF, Ferré N, Liu YJ. QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms. Chemistry 2013; 19:8466-72. [PMID: 23670851 DOI: 10.1002/chem.201300678] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Indexed: 11/06/2022]
Abstract
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF-hand calcium-binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H-bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine-type luciferases).
Collapse
Affiliation(s)
- Shu-Feng Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | | | | |
Collapse
|
39
|
Li ZS, Zhao X, Zou LY, Ren AM. The Dynamics Simulation and Quantum Calculation Investigation About Luminescence Mechanism of Coelenteramide. Photochem Photobiol 2013; 89:849-55. [DOI: 10.1111/php.12073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Zuo-Sheng Li
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Xi Zhao
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Lu-Yi Zou
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| | - Ai-Min Ren
- State Key Laboratory of Theoretical and Computational Chemistry; Institute of Theoretical Chemistry; Jilin University; Changchun; China
| |
Collapse
|
40
|
Eremeeva EV, Markova SV, Frank LA, Visser AJWG, van Berkel WJH, Vysotski ES. Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin. Photochem Photobiol Sci 2013; 12:1016-24. [PMID: 23525241 DOI: 10.1039/c3pp00002h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca(2+)-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.
Collapse
Affiliation(s)
- Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | | | | | | | | | | |
Collapse
|
41
|
Mahdavi A, Sajedi RH, Hosseinkhani S, Taghdir M, Sariri R. Site-directed mutagenesis of photoprotein mnemiopsin: implication of some conserved residues in bioluminescence properties. Photochem Photobiol Sci 2013. [DOI: 10.1039/c2pp25320h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Chen SF, Navizet I, Roca-Sanjuán D, Lindh R, Liu YJ, Ferré N. Chemiluminescence of Coelenterazine and Fluorescence of Coelenteramide: A Systematic Theoretical Study. J Chem Theory Comput 2012; 8:2796-807. [DOI: 10.1021/ct300356j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Feng Chen
- Key Laboratory of Theoretical and
Computational Photochemistry (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Isabelle Navizet
- Université Paris-Est, Laboratoire
Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS,
5 bd Descartes, 77454 Marne-la-Vallée, France
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits Johannesburg
2050, South Africa
| | - Daniel Roca-Sanjuán
- Department
of Chemistry—Ångström, the Theoretical Chemistry
Programme, Uppsala University, P.O. Box
518, S-75120 Uppsala, Sweden
| | - Roland Lindh
- Department
of Chemistry—Ångström, the Theoretical Chemistry
Programme, Uppsala University, P.O. Box
518, S-75120 Uppsala, Sweden
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and
Computational Photochemistry (Beijing Normal University), Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nicolas Ferré
- Aix-Marseille Université, Institut
de Chimie Radicalaire, 13397 Marseille Cedex 20, France
| |
Collapse
|
43
|
Markova SV, Burakova LP, Golz S, Malikova NP, Frank LA, Vysotski ES. The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+-regulated photoprotein. FEBS J 2012; 279:856-70. [DOI: 10.1111/j.1742-4658.2012.08476.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Roca-Sanjuán D, Delcey MG, Navizet I, Ferré N, Liu YJ, Lindh R. Chemiluminescence and Fluorescence States of a Small Model for Coelenteramide and Cypridina Oxyluciferin: A CASSCF/CASPT2 Study. J Chem Theory Comput 2011; 7:4060-9. [DOI: 10.1021/ct2004758] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Roca-Sanjuán
- Department of Chemistry—Ångström, Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, S-75120 Uppsala, Sweden
| | - Mickael G. Delcey
- Department of Chemistry—Ångström, Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, S-75120 Uppsala, Sweden
| | - Isabelle Navizet
- Molecular Science Institute School of Chemistry, University of the Witwatersrand, PO Wits Johannesburg 2050, South Africa
| | - Nicolas Ferré
- Universités d’Aix-Marseille I, II, et III-CNRS UMR 6264: Laboratoire Chimie Provence, Equipe: Chimie Théorique Faculté de St-Jérome, Case 521, 13397 Marseille Cedex 20, France
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Roland Lindh
- Department of Chemistry—Ångström, Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, S-75120 Uppsala, Sweden
| |
Collapse
|
45
|
Malikova NP, Visser NV, van Hoek A, Skakun VV, Vysotski ES, Lee J, Visser AJWG. Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin. Biochemistry 2011; 50:4232-41. [DOI: 10.1021/bi101671p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natalia P. Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russia
| | | | | | - Victor V. Skakun
- Department of Systems Analysis, Belarusian State University, Minsk 220050, Belarus
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | | |
Collapse
|
46
|
Discharged photoprotein obelin: fluorescence peculiarities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:103-8. [PMID: 20678944 DOI: 10.1016/j.jphotobiol.2010.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/20/2022]
Abstract
Photoprotein obelin, the enzyme-substrate complex of polypeptide with 2-hydroperoxycoelenterazine, is responsible for bioluminescence of marine hydroid Obelia longissima. Addition of Ca(2+) to the photoprotein triggers the bioluminescent reaction with light emission. The product of the bioluminescent reaction--enzyme-bound coelenteramide--is a fluorescent protein called 'discharged' obelin. It is stable and highly fluorescent. The paper considers dependence of its light-induced fluorescence on Ca(2+) concentration. Increase of Ca(2+) concentration enhanced the fluorescence intensity of discharged obelin; the dependence was found as linear in double logarithmic coordinates at Ca(2+) concentration range 10(-7)-10(-6) M, both in excitation and emission spectra. The spectra were divided into components; contributions of the components to experimental excitation and emission spectra depended on Ca(2+) concentration. The data suggest enzymatic conformational transition in discharged obelin at approximately 5 x 10(-7) M of Ca(2+) concentration. Spectra variations were attributed to acidity changes of discharged obelin chromophore (coelenteramide) in its fluorescent state S(1)*.
Collapse
|
47
|
Rowe L, Ensor M, Mehl R, Daunert S. Modulating the bioluminescence emission of photoproteins by in vivo site-directed incorporation of non-natural amino acids. ACS Chem Biol 2010; 5:455-60. [PMID: 20230005 DOI: 10.1021/cb9002909] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The in vivo incorporation of non-natural amino acids into specific sites within proteins has become an extremely powerful tool for bio- and protein chemists in recent years. One avenue that has yet to be explored, however, is whether or not the incorporation of non-natural amino acids can tune the color of light emitted by bioluminescent proteins, whose light emission mechanisms are more complex and less well understood than their fluorescent counterparts. Bioluminescent proteins are becoming increasingly important in a variety of research fields, such as in situ imaging and the study of protein-protein interactions in vivo, and an increased spectral variety of bioluminescent reporters is needed for further progress. Thus, herein we report the first successful spectral shifting (44 nm) of a bioluminescent protein, aequorin, via the site-specific incorporation of several non-natural amino acids into an integral amino acid position within the aequorin structure in vivo.
Collapse
Affiliation(s)
- Laura Rowe
- Department of Chemistry, University of Kentucky, Rose Street, Lexington, Kentucky 40506
| | - Mark Ensor
- Department of Chemistry, University of Kentucky, Rose Street, Lexington, Kentucky 40506
| | - Ryan Mehl
- Department of Chemistry, Franklin and Marshall College, 415 Harrisburg Avenue, Lancaster, Pennsylvania, 17603
| | - Sylvia Daunert
- Department of Chemistry, University of Kentucky, Rose Street, Lexington, Kentucky 40506
| |
Collapse
|
48
|
Drobac E, Tricoire L, Chaffotte AF, Guiot E, Lambolez B. Calcium imaging in single neurons from brain slices using bioluminescent reporters. J Neurosci Res 2010; 88:695-711. [PMID: 19798746 DOI: 10.1002/jnr.22249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Responses of three bioluminescent Ca(2+) sensors were studied in vitro and in neurons from brain slices. These sensors consisted of tandem fusions of green fluorescent protein (GFP) with the photoproteins aequorin, obelin, or a mutant aequorin with high Ca(2+) sensitivity. Kinetics of GFP-obelin responses to a saturating Ca(2+) concentration were faster than those of GFP-aequorin at all Mg(2+) concentrations tested, whereas GFP-mutant aequorin responses were the slowest. GFP-photoproteins were efficiently expressed in pyramidal neurons following overnight incubation of acute neocortical slices with recombinant Sindbis viruses. Expression of GFP-photoproteins did not result in conspicuous modification of morphological or electrophysiological properties of layer V pyramidal cells. The three sensors allowed the detection of Ca(2+) transients associated with action potential discharge in single layer V pyramidal neurons. In these neurons, depolarizing steps of increasing amplitude elicited action potential discharge of increasing frequency. Bioluminescent responses of the three sensors were similar in several respects: detection thresholds, an exponential increase with stimulus intensity, photoprotein consumptions, and kinetic properties. These responses, which were markedly slower than kinetics measured in vitro, increased linearly during the action potential discharge and decayed exponentially at the end of the discharge. Onset slopes increased with stimulus intensity, whereas decay kinetics remained constant. Dendritic light emission contributed to whole-field responses, but the spatial resolution of bioluminescence imaging was limited to the soma and proximal apical dendrite. Nonetheless, the high signal-to-background ratio of GFP-photoproteins allowed the detection of Ca(2+) transients associated with 5 action potentials in single neurons upon whole-field bioluminescence recordings.
Collapse
Affiliation(s)
- Estelle Drobac
- Université Pierre et Marie Curie-Paris 6, Neurobiologie des Processus Adaptatifs, CNRS UMR 7102, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Rowe L, Dikici E, Daunert S. Engineering bioluminescent proteins: expanding their analytical potential. Anal Chem 2010; 81:8662-8. [PMID: 19725502 DOI: 10.1021/ac9007286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioluminescent proteins are used in a plethora of analytical methods, from ultrasensitive assay development to the in vivo imaging of cellular processes. This article reviews the most pertinent current bioluminescent-protein-based technologies and suggests the future direction of this vein of research. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Collapse
|
50
|
Webb SE, Rogers KL, Karplus E, Miller AL. The use of aequorins to record and visualize Ca(2+) dynamics: from subcellular microdomains to whole organisms. Methods Cell Biol 2010; 99:263-300. [PMID: 21035690 DOI: 10.1016/b978-0-12-374841-6.00010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter, we describe the practical aspects of measuring [Ca(2+)] transients that are generated in a particular cytoplasmic domain, or within a specific organelle or its periorganellar environment, using bioluminescent, genetically encoded and targeted Ca(2+) reporters, especially those based on apoaequorin. We also list examples of the organisms, tissues, and cells that have been transfected with apoaequorin or an apoaequorin-BRET complex, as well as of the organelles and subcellular domains that have been specifically targeted with these bioluminescent Ca(2+) reporters. In addition, we summarize the various techniques used to load the apoaequorin cofactor, coelenterazine, and its analogs into cells, tissues, and intact organisms, and we describe recent advances in the detection and imaging technologies that are currently being used to measure and visualize the luminescence generated by the aequorin-Ca(2+) reaction within these various cytoplasmic domains and subcellular compartments.
Collapse
Affiliation(s)
- Sarah E Webb
- Biochemistry and Cell Biology Section and State Key Laboratory of Molecular Neuroscience, Division of Life Science, HKUST, Clear Water Bay, Kowloon, Hong Kong, PR China
| | | | | | | |
Collapse
|