1
|
Babich O, Larina V, Krol O, Ulrikh E, Sukhikh S, Gureev MA, Prosekov A, Ivanova S. In Vitro Study of Biological Activity of Tanacetum vulgare Extracts. Pharmaceutics 2023; 15:616. [PMID: 36839938 PMCID: PMC9961778 DOI: 10.3390/pharmaceutics15020616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tanacetum vulgare is an herbaceous plant widely used in folk medicine. It is rich in phenolic acids and flavonoids, which have pharmacological and medicinal properties, such as anthelmintic, antispasmodic, tonic, antidiabetic, diuretic, and antihypertensive. This study aimed to confirm the presence of biologically active substances in Tanacetum vulgare and to determine the pharmacological spectrum of biological activity of Tanacetum vulgare extract components. When preparing Tanacetum vulgare extracts, the highest yield was observed when using the maceration method with a mixture of solvents methanol + trifluoroacetic acid (22.65 ± 0.68%). The biologically active substances in Tanacetum vulgare extract samples were determined using high-performance liquid chromatography. Biologically active substances such as luteolin-7-glucoside (550.80 mg/kg), chlorogenic acid (5945.40 mg/kg), and rosmarinic acid (661.31 mg/kg) were identified. Their structures were determined. The experiments have confirmed the antioxidant and antibacterial activities. Secondary metabolites of Tanacetum vulgare extracts have been found to have previously unknown biological activity types; experimental confirmation of their existence will advance phytochemical research and lead to the development of new drugs.
Collapse
Affiliation(s)
- Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Viktoria Larina
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Olesia Krol
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Elena Ulrikh
- Institute of Agroengineering and Food System, Kaliningrad State Technical University, Soviet Avenue 1, Kaliningrad 236022, Russia
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Maxim A. Gureev
- Center of Bio- and Chemoinformatics, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8/2, Moscow 119991, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| |
Collapse
|
2
|
Kišonaitė M, Wild K, Lapouge K, Ruppert T, Sinning I. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Nat Commun 2022; 13:476. [PMID: 35079002 PMCID: PMC8789840 DOI: 10.1038/s41467-022-27967-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRibosomes are complex and highly conserved ribonucleoprotein assemblies catalyzing protein biosynthesis in every organism. Here we present high-resolution cryo-EM structures of the 80S ribosome from a thermophilic fungus in two rotational states, which due to increased 80S stability provide a number of mechanistic details of eukaryotic translation. We identify a universally conserved ‘nested base-triple knot’ in the 26S rRNA at the polypeptide tunnel exit with a bulged-out nucleotide that likely serves as an adaptable element for nascent chain containment and handover. We visualize the structure and dynamics of the ribosome protective factor Stm1 upon ribosomal 40S head swiveling. We describe the structural impact of a unique and essential m1acp3 Ψ 18S rRNA hyper-modification embracing the anticodon wobble-position for eukaryotic tRNA and mRNA translocation. We complete the eEF2-GTPase switch cycle describing the GDP-bound post-hydrolysis state. Taken together, our data and their integration into the structural landscape of 80S ribosomes furthers our understanding of protein biogenesis.
Collapse
|
3
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
4
|
Tomlinson JH, Kalverda AP, Calabrese AN. Fusidic acid resistance through changes in the dynamics of the drug target. Proc Natl Acad Sci U S A 2020; 117:25523-25531. [PMID: 32999060 PMCID: PMC7568287 DOI: 10.1073/pnas.2008577117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antibiotic resistance in clinically important bacteria can be mediated by target protection mechanisms, whereby a protein binds to the drug target and protects it from the inhibitory effects of the antibiotic. The most prevalent source of clinical resistance to the antibiotic fusidic acid (FA) is expression of the FusB family of proteins that bind to the drug target (Elongation factor G [EF-G]) and promote dissociation of EF-G from FA-stalled ribosome complexes. FusB binding causes changes in both the structure and conformational flexibility of EF-G, but which of these changes drives FA resistance was not understood. We present here detailed characterization of changes in the conformational flexibility of EF-G in response to FusB binding and show that these changes are responsible for conferring FA resistance. Binding of FusB to EF-G causes a significant change in the dynamics of domain III of EF-GC3 that leads to an increase in a minor, more disordered state of EF-G domain III. This is sufficient to overcome the steric block of transmission of conformational changes within EF-G by which FA prevents release of EF-G from the ribosome. This study has identified an antibiotic resistance mechanism mediated by allosteric effects on the dynamics of the drug target.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom;
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Antonio N Calabrese
- School of Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
5
|
Rodnina MV, Peske F, Peng BZ, Belardinelli R, Wintermeyer W. Converting GTP hydrolysis into motion: versatile translational elongation factor G. Biol Chem 2020; 401:131-142. [PMID: 31600135 DOI: 10.1515/hsz-2019-0313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Med Chem 2020; 12:763-774. [PMID: 32208979 DOI: 10.4155/fmc-2019-0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Fusidic acid (FA) is a narrow-spectrum bacteriostatic antibiotic. We inadvertently discovered that a FA derivative modified by an amino-terminal group at the 3-OH position, namely 2, inhibited the growth of Cryptococcus neoformans. Methods & results: Multiscale molecular modeling approaches were used to analyze the binding modes of 2 with eEF2. FA derivatives modified at the 3-OH position were designed based on in silico models; seven derivatives possessing different amino-terminal groups were synthesized and tested in vitro for antifungal activity against C. neoformans. Conclusion: Compound 7 had the strongest minimum inhibitory concentration. Two protonated nitrogen atoms of 7 interacted with a negative electrostatic pocket of eEF2 likely explain the superiority of 7-2.
Collapse
|
7
|
Fenwick MK, Ealick SE. Structural basis of elongation factor 2 switching. Curr Res Struct Biol 2020; 2:25-34. [PMID: 34235467 PMCID: PMC8244253 DOI: 10.1016/j.crstbi.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Archaebacterial and eukaryotic elongation factor 2 (EF-2) and bacterial elongation factor G (EF-G) are five domain GTPases that catalyze the ribosomal translocation of tRNA and mRNA. In the classical mechanism of activation, GTPases are switched on through GDP/GTP exchange, which is accompanied by the ordering of two flexible segments called switch I and II. However, crystal structures of EF-2 and EF-G have thus far not revealed the conformations required by the classical mechanism. Here, we describe crystal structures of Methanoperedens nitroreducens EF-2 (MnEF-2) and MnEF-2-H595N bound to GMPPCP (GppCp) and magnesium displaying previously unreported compact conformations. Domain III forms interfaces with the other four domains and the overall conformations resemble that of SNU114, the eukaryotic spliceosomal GTPase. The gamma phosphate of GMPPCP is detected through interactions with switch I and a P-loop structural element. Switch II is highly ordered whereas switch I shows a variable degree of ordering. The ordered state results in a tight interdomain arrangement of domains I-III and the formation of a portion of a predicted monovalent cation site involving the P-loop and switch I. The side chain of an essential histidine residue in switch II is placed in the inactive conformation observed for the “on” state of elongation factor EF-Tu. The compact conformations of MnEF-2 and MnEF-2-H595N suggest an “on” ribosome-free conformational state. Crystal structures of ribosome-free elongation factor 2 (EF-2) bound to GTP analog and magnesium. Compact conformation and P-loop, switch I, and switch II structures suggest “on” state. Arrangement of domains I-III similar to that of ribosome-bound EF-2/EF-G complexed with GTP analog. Switch II histidine shows inactive conformation observed for “on” state of ribosome-free EF-Tu.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Tanzawa T, Kato K, Girodat D, Ose T, Kumakura Y, Wieden HJ, Uchiumi T, Tanaka I, Yao M. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Res 2019; 46:3232-3244. [PMID: 29471537 PMCID: PMC5887453 DOI: 10.1093/nar/gky115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Abstract
Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G′ of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.
Collapse
Affiliation(s)
- Takehito Tanzawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Kumakura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
9
|
Abstract
Many cellular processes are controlled by GTPases, and gaining quantitative understanding of the activation of such processes has been a major challenge. In particular, it is crucial to obtain reliable free-energy surfaces for the relevant reaction paths both in solution and in GTPases active sites. Here, we revisit the energetics of the activation of EF-G and EF-Tu by the ribosome and explore the nature of the catalysis of the GTPase reaction. The comparison of EF-Tu to EF-G allows us to explore the impact of possible problems with the available structure of EF-Tu. Additionally, mutational effects are used for a careful validation of the emerging conclusions. It is found that the reaction may proceed by both a two-water mechanism and a one-water (GTP as a base) mechanism. However, in both cases, the activation involves a structural allosteric effect, which is likely to be a general-activation mechanism for all GTPases.
Collapse
|
10
|
Chen Y, Kaji A, Kaji H, Cooperman BS. The kinetic mechanism of bacterial ribosome recycling. Nucleic Acids Res 2017; 45:10168-10177. [PMID: 28973468 PMCID: PMC5737721 DOI: 10.1093/nar/gkx694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial ribosome recycling requires breakdown of the post-termination complex (PoTC), comprising a messenger RNA (mRNA) and an uncharged transfer RNA (tRNA) cognate to the terminal mRNA codon bound to the 70S ribosome. The translation factors, elongation factor G and ribosome recycling factor, are known to be required for recycling, but there is controversy concerning whether these factors act primarily to effect the release of mRNA and tRNA from the ribosome, with the splitting of the ribosome into subunits being somewhat dispensable, or whether their main function is to catalyze the splitting reaction, which necessarily precedes mRNA and tRNA release. Here, we utilize three assays directly measuring the rates of mRNA and tRNA release and of ribosome splitting in several model PoTCs. Our results largely reconcile these previously held views. We demonstrate that, in the absence of an upstream Shine–Dalgarno (SD) sequence, PoTC breakdown proceeds in the order: mRNA release followed by tRNA release and then by 70S splitting. By contrast, in the presence of an SD sequence all three processes proceed with identical apparent rates, with the splitting step likely being rate-determining. Our results are consistent with ribosome profiling results demonstrating the influence of upstream SD-like sequences on ribosome occupancy at or just before the mRNA stop codon.
Collapse
Affiliation(s)
- Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19137, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Maderbocus R, Fields BL, Hamilton K, Luo S, Tran TH, Dietrich LEP, Tong L. Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer. Nat Commun 2017; 8:160. [PMID: 28757619 PMCID: PMC5534430 DOI: 10.1038/s41467-017-00233-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas species and other aerobic bacteria have a biotin-independent malonate decarboxylase that is crucial for their utilization of malonate as the sole carbon and energy source. The malonate decarboxylase holoenzyme contains four subunits, having an acyl-carrier protein (MdcC subunit) with a distinct prosthetic group, as well as decarboxylase (MdcD–MdcE) and acyl-carrier protein transferase (MdcA) catalytic activities. Here we report the crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer, as well as biochemical and functional studies based on the structural information. We observe a malonate molecule in the active site of MdcA and we also determine the structure of malonate decarboxylase with CoA in the active site of MdcD–MdcE. Both structures provide molecular insights into malonate decarboxylase catalysis. Mutations in the hetero-tetramer interface can abolish holoenzyme formation. Mutations in the hetero-tetramer interface and the active sites can abolish Pseudomonas aeruginosa growth in a defined medium with malonate as the sole carbon source. Some aerobic bacteria contain a biotin-independent malonate decarboxylase (MDC), which allows them to use malonate as the sole carbon source. Here, the authors present the crystal structure of a Pseudomonas MDC and give insights into its catalytic mechanism and function.
Collapse
Affiliation(s)
- Riyaz Maderbocus
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Blanche L Fields
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
12
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
13
|
Ero R, Kumar V, Chen Y, Gao YG. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function. RNA Biol 2016; 13:1258-1273. [PMID: 27325008 PMCID: PMC5207388 DOI: 10.1080/15476286.2016.1201627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.
Collapse
Affiliation(s)
- Rya Ero
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Veerendra Kumar
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| | - Yun Chen
- a School of Biological Sciences , Nanyang Technological University , Singapore
| | - Yong-Gui Gao
- a School of Biological Sciences , Nanyang Technological University , Singapore.,b Institute of Molecular and Cell Biology, A*STAR , Singapore
| |
Collapse
|
14
|
Tomlinson JH, Thompson GS, Kalverda AP, Zhuravleva A, O'Neill AJ. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Sci Rep 2016; 6:19524. [PMID: 26781961 PMCID: PMC4725979 DOI: 10.1038/srep19524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 11/09/2022] Open
Abstract
Antibiotic resistance in clinically important bacteria can be mediated by proteins that physically associate with the drug target and act to protect it from the inhibitory effects of an antibiotic. We present here the first detailed structural characterization of such a target protection mechanism mediated through a protein-protein interaction, revealing the architecture of the complex formed between the FusB fusidic acid resistance protein and the drug target (EF-G) it acts to protect. Binding of FusB to EF-G induces conformational and dynamic changes in the latter, shedding light on the molecular mechanism of fusidic acid resistance.
Collapse
Affiliation(s)
- Jennifer H Tomlinson
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Gary S Thompson
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Anastasia Zhuravleva
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| | - Alex J O'Neill
- School of Molecular and Cellular Biology, Garstang Building, University of Leeds, Leeds, UK, LS2 9JT.,Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK, LS2 9JT
| |
Collapse
|
15
|
Structure of BipA in GTP form bound to the ratcheted ribosome. Proc Natl Acad Sci U S A 2015; 112:10944-9. [PMID: 26283392 DOI: 10.1073/pnas.1513216112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3',5'-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation.
Collapse
|
16
|
Koripella RK, Holm M, Dourado D, Mandava CS, Flores S, Sanyal S. A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate. Sci Rep 2015; 5:12970. [PMID: 26264741 PMCID: PMC4532990 DOI: 10.1038/srep12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 01/13/2023] Open
Abstract
Elongation factor G (EF-G), a translational GTPase responsible for tRNA-mRNA translocation possesses a conserved histidine (H91 in Escherichia coli) at the apex of switch-II, which has been implicated in GTPase activation and GTP hydrolysis. While H91A, H91R and H91E mutants showed different degrees of defect in ribosome associated GTP hydrolysis, H91Q behaved like the WT. However, all these mutants, including H91Q, are much more defective in inorganic phosphate (Pi) release, thereby suggesting that H91 facilitates Pi release. In crystal structures of the ribosome bound EF-G•GTP a tight coupling between H91 and the γ-phosphate of GTP can be seen. Following GTP hydrolysis, H91 flips ~140° in the opposite direction, probably with Pi still coupled to it. This, we suggest, promotes Pi to detach from GDP and reach the inter-domain space of EF-G, which constitutes an exit path for the Pi. Molecular dynamics simulations are consistent with this hypothesis and demonstrate a vital role of an Mg2+ ion in the process.
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Mikael Holm
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Daniel Dourado
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Samuel Flores
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| |
Collapse
|
17
|
Fan H, Hahm J, Diggs S, Perry JJP, Blaha G. Structural and Functional Analysis of BipA, a Regulator of Virulence in Enteropathogenic Escherichia coli. J Biol Chem 2015; 290:20856-20864. [PMID: 26163516 PMCID: PMC4543647 DOI: 10.1074/jbc.m115.659136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3′, 5′-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.
Collapse
Affiliation(s)
- Haitian Fan
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Joseph Hahm
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, California 92521
| | - J Jefferson P Perry
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, California 92521.
| |
Collapse
|
18
|
Lin J, Gagnon MG, Bulkley D, Steitz TA. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 2015; 160:219-27. [PMID: 25594181 DOI: 10.1016/j.cell.2014.11.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022]
Abstract
The universally conserved GTPase elongation factor G (EF-G) catalyzes the translocation of tRNA and mRNA on the ribosome after peptide bond formation. Despite numerous studies suggesting that EF-G undergoes extensive conformational rearrangements during translocation, high-resolution structures exist for essentially only one conformation of EF-G in complex with the ribosome. Here, we report four atomic-resolution crystal structures of EF-G bound to the ribosome programmed in the pre- and posttranslocational states and to the ribosome trapped by the antibiotic dityromycin. We observe a previously unseen conformation of EF-G in the pretranslocation complex, which is independently captured by dityromycin on the ribosome. Our structures provide insights into the conformational space that EF-G samples on the ribosome and reveal that tRNA translocation on the ribosome is facilitated by a structural transition of EF-G from a compact to an elongated conformation, which can be prevented by the antibiotic dityromycin.
Collapse
Affiliation(s)
- Jinzhong Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | - David Bulkley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
19
|
Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:25-41. [PMID: 25618148 PMCID: PMC4329189 DOI: 10.1007/s10969-015-9193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2015] [Indexed: 11/15/2022]
Abstract
The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 μM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Ryohei Ishii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasushi Hikida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuya Fukunaga
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Department of Biochemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, 521A Physiology Bldg., Baltimore, MD 21205 USA
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
20
|
Yeo ELL, Chua AJS, Parthasarathy K, Yeo HY, Ng ML, Kah JCY. Understanding aggregation-based assays: nature of protein corona and number of epitopes on antigen matters. RSC Adv 2015. [DOI: 10.1039/c4ra12089b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, we systematically examine how the nature of the protein corona on NPs, formed from either antibody or antigen, and how the number of binding sites or epitopes on the antigen affect aggregation.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Krupakar Parthasarathy
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Hui Yu Yeo
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - James Chen Yong Kah
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| |
Collapse
|
21
|
Salsi E, Farah E, Netter Z, Dann J, Ermolenko DN. Movement of elongation factor G between compact and extended conformations. J Mol Biol 2014; 427:454-67. [PMID: 25463439 DOI: 10.1016/j.jmb.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022]
Abstract
Previous structural studies suggested that ribosomal translocation is accompanied by large interdomain rearrangements of elongation factor G (EF-G). Here, we follow the movement of domain IV of EF-G relative to domain II of EF-G using ensemble and single-molecule Förster resonance energy transfer. Our results indicate that ribosome-free EF-G predominantly adopts a compact conformation that can also, albeit infrequently, transition into a more extended conformation in which domain IV moves away from domain II. By contrast, ribosome-bound EF-G predominantly adopts an extended conformation regardless of whether it is interacting with pretranslocation ribosomes or with posttranslocation ribosomes. Our data suggest that ribosome-bound EF-G may also occasionally sample at least one more compact conformation. GTP hydrolysis catalyzed by EF-G does not affect the relative stability of the observed conformations in ribosome-free and ribosome-bound EF-G. Our data support a model suggesting that, upon binding to a pretranslocation ribosome, EF-G moves from a compact to a more extended conformation. This transition is not coupled to but likely precedes both GTP hydrolysis and mRNA/tRNA translocation.
Collapse
Affiliation(s)
- Enea Salsi
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elie Farah
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Zoe Netter
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jillian Dann
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
22
|
Kuhle B, Ficner R. A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 2014; 33:2547-63. [PMID: 25225612 DOI: 10.15252/embj.201488517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP-dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high-resolution structural evidence that eIF5B and aEF1A/EF-Tu bound to GTP or GTPγS coordinate a monovalent cation (M(+)) in their active site. Our data reveal that M(+) ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP-bound "on" state. Additionally, the M(+) ion provides a positive charge into the active site analogous to the arginine-finger in the Ras-RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M(+) ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M(+)-dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik Göttinger Zentrum für Molekulare Biowissenschaften Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Holtkamp W, Wintermeyer W, Rodnina MV. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Bioessays 2014; 36:908-18. [PMID: 25118068 DOI: 10.1002/bies.201400076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
24
|
Ishida H, Matsumoto A. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations. PLoS One 2014; 9:e101951. [PMID: 24999999 PMCID: PMC4084982 DOI: 10.1371/journal.pone.0101951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/12/2014] [Indexed: 01/11/2023] Open
Abstract
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
- * E-mail:
| | - Atsushi Matsumoto
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
| |
Collapse
|
25
|
Lumme C, Altan-Martin H, Dastvan R, Sommer MS, Oreb M, Schuetz D, Hellenkamp B, Mirus O, Kretschmer J, Lyubenova S, Kügel W, Medelnik JP, Dehmer M, Michaelis J, Prisner TF, Hugel T, Schleiff E. Nucleotides and substrates trigger the dynamics of the Toc34 GTPase homodimer involved in chloroplast preprotein translocation. Structure 2014; 22:526-38. [PMID: 24631462 DOI: 10.1016/j.str.2014.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 12/13/2022]
Abstract
GTPases are molecular switches that control numerous crucial cellular processes. Unlike bona fide GTPases, which are regulated by intramolecular structural transitions, the less well studied GAD-GTPases are activated by nucleotide-dependent dimerization. A member of this family is the translocase of the outer envelope membrane of chloroplast Toc34 involved in regulation of preprotein import. The GTPase cycle of Toc34 is considered a major circuit of translocation regulation. Contrary to expectations, previous studies yielded only marginal structural changes of dimeric Toc34 in response to different nucleotide loads. Referencing PELDOR and FRET single-molecule and bulk experiments, we describe a nucleotide-dependent transition of the dimer flexibility from a tight GDP- to a flexible GTP-loaded state. Substrate binding induces an opening of the GDP-loaded dimer. Thus, the structural dynamics of bona fide GTPases induced by GTP hydrolysis is replaced by substrate-dependent dimer flexibility, which likely represents a general regulatory mode for dimerizing GTPases.
Collapse
Affiliation(s)
- Christina Lumme
- Physics Department E22 and IMETUM, Technical University Munich, 85748 Garching, Germany
| | - Hasret Altan-Martin
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | - Reza Dastvan
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60438 Frankfurt, Germany; Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany; Department of Molecular Physiology & Biophysics, Vanderbilt University, 741 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Maik S Sommer
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | - Mislav Oreb
- Physics Department E22 and IMETUM, Technical University Munich, 85748 Garching, Germany
| | - Denise Schuetz
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60438 Frankfurt, Germany; Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Björn Hellenkamp
- Physics Department E22 and IMETUM, Technical University Munich, 85748 Garching, Germany
| | - Oliver Mirus
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | - Jens Kretschmer
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | - Sevdalina Lyubenova
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60438 Frankfurt, Germany; Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | | | - Jan P Medelnik
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | - Manuela Dehmer
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany
| | | | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60438 Frankfurt, Germany; Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany
| | - Thorsten Hugel
- Physics Department E22 and IMETUM, Technical University Munich, 85748 Garching, Germany
| | - Enrico Schleiff
- Institute of Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60438 Frankfurt, Germany; Center for Membrane Proteomics, Goethe University, 60438 Frankfurt, Germany.
| |
Collapse
|
26
|
Guo X, Peisker K, Bäckbro K, Chen Y, Koripella RK, Mandava CS, Sanyal S, Selmer M. Structure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling. Open Biol 2013; 2:120016. [PMID: 22645663 PMCID: PMC3352095 DOI: 10.1098/rsob.120016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/23/2012] [Indexed: 11/12/2022] Open
Abstract
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G–ribosome complex.
Collapse
Affiliation(s)
- Xiaohu Guo
- Department of Cell and Molecular Biology, BMC, P.O. Box 596, SE 751 24, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 2013; 340:1235490. [PMID: 23812720 PMCID: PMC3836249 DOI: 10.1126/science.1235490] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.
Collapse
Affiliation(s)
| | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
28
|
Paleskava A, Konevega AL, Rodnina MV. Thermodynamics of the GTP-GDP-operated conformational switch of selenocysteine-specific translation factor SelB. J Biol Chem 2012; 287:27906-12. [PMID: 22740700 PMCID: PMC3431659 DOI: 10.1074/jbc.m112.366120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.
Collapse
Affiliation(s)
- Alena Paleskava
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey L. Konevega
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marina V. Rodnina
- From the Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Caulfield T, Devkota B. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 2012; 80:2489-500. [PMID: 22730134 DOI: 10.1002/prot.24131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
Abstract
The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleic-riboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a "structural gate," formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the Watson-Crick base pairing of the codon-anticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codon-anticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications.
Collapse
Affiliation(s)
- Thomas Caulfield
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
30
|
Koripella RK, Chen Y, Peisker K, Koh CS, Selmer M, Sanyal S. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 2012; 287:30257-67. [PMID: 22767604 DOI: 10.1074/jbc.m112.378521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Callegari S, Gregory PA, Sykes MJ, Bellon J, Andrews S, McKinnon RA, de Barros Lopes MA. Polymorphisms in the mitochondrial ribosome recycling factor EF-G2mt/MEF2 compromise cell respiratory function and increase atorvastatin toxicity. PLoS Genet 2012; 8:e1002755. [PMID: 22719265 PMCID: PMC3375252 DOI: 10.1371/journal.pgen.1002755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/25/2012] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans. The mitochondria are responsible for producing the cell's energy. Energy production is the result of carefully orchestrated interactions between proteins encoded by the mitochondrial DNA and by nuclear DNA. Sequence variations in genes encoding these proteins have been shown to cause disease and adverse drug reactions in patients. The cholesterol-lowering drugs statins are one class of drugs that interfere with mitochondrial function. Statins are one of the most prescribed drugs in the western world, but many users suffer side effects, commonly muscle pain. In severe cases this can lead to muscle breakdown and liver failure. In this study, we discover that disruption of a mitochondrial translation gene, EF-G2mt, impedes respiration and increases cell death when exposed to statin. Using the simple unicellular organism yeast as a model, the activity of naturally occurring human EF-G2mt variants is tested. Three of these variants render yeast cells more sensitive to statin. Patients who possess these EF-G2mt variations may be more susceptible to statin side effects. Importantly, the test for statin sensitivity also led to the discovery of mutants that have a reduced energy production capacity. The decreased ability to produce energy is linked to a number of diseases, including myopathies and liver failure.
Collapse
Affiliation(s)
- Sylvie Callegari
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Philip A. Gregory
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
- Discipline of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew J. Sykes
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jennifer Bellon
- Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Stuart Andrews
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross A. McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Miguel A. de Barros Lopes
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
32
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
33
|
Długosz M, Huber GA, McCammon JA, Trylska J. Brownian dynamics study of the association between the 70S ribosome and elongation factor G. Biopolymers 2011; 95:616-27. [PMID: 21394717 PMCID: PMC3125448 DOI: 10.1002/bip.21619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 02/01/2023]
Abstract
Protein synthesis on the ribosome involves a number of external protein factors that bind at its functional sites. One key factor is the elongation factor G (EF-G) that facilitates the translocation of transfer RNAs between their binding sites, as well as advancement of the messenger RNA by one codon. The details of the EF-G/ribosome diffusional encounter and EF-G association pathway still remain unanswered. Here, we applied Brownian dynamics methodology to study bimolecular association in the bacterial EF-G/70S ribosome system. We estimated the EF-G association rate constants at 150 and 300 mM monovalent ionic strengths and obtained reasonable agreement with kinetic experiments. We have also elucidated the details of EF-G/ribosome association paths and found that positioning of the L11 protein of the large ribosomal subunit is likely crucial for EF-G entry to its binding site.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
34
|
Ticu C, Murataliev M, Nechifor R, Wilson KS. A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis, and ribosome translocation. J Biol Chem 2011; 286:21697-705. [PMID: 21531717 DOI: 10.1074/jbc.m110.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome. A conserved phenylalanine in the switch II element of EF-G was important for suppressing GTP hydrolysis in solution and critical for catalyzing translocation of the ribosome along mRNA. These experimental results reveal the multipurpose roles of an interdomain joint in the heart of an essential translation factor that can both promote and inhibit bacterial translation.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
35
|
Kulczycka K, Długosz M, Trylska J. Molecular dynamics of ribosomal elongation factors G and Tu. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:289-303. [PMID: 21152913 PMCID: PMC3045518 DOI: 10.1007/s00249-010-0647-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 11/04/2022]
Abstract
Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.
Collapse
Affiliation(s)
- Katarzyna Kulczycka
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Science, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
36
|
Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2010; 30:289-301. [PMID: 21151095 DOI: 10.1038/emboj.2010.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/17/2010] [Indexed: 11/08/2022] Open
Abstract
We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.
Collapse
|
37
|
Chen Y, Koripella RK, Sanyal S, Selmer M. Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid. FEBS J 2010; 277:3789-803. [PMID: 20718859 DOI: 10.1111/j.1742-4658.2010.07780.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) on the ribosome in a post-translocational state. It is used clinically against Gram-positive bacteria such as pathogenic strains of Staphylococcus aureus, but no structural information has been available for EF-G from these species. We have solved the apo crystal structure of EF-G from S. aureus to 1.9 Å resolution. This structure shows a dramatically different overall conformation from previous structures of EF-G, although the individual domains are highly similar. Between the different structures of free or ribosome-bound EF-G, domains III-V move relative to domains I-II, resulting in a displacement of the tip of domain IV relative to domain G. In S. aureus EF-G, this displacement is about 25 Å relative to structures of Thermus thermophilus EF-G in a direction perpendicular to that in previous observations. Part of the switch I region (residues 46-56) is ordered in a helix, and has a distinct conformation as compared with structures of EF-Tu in the GDP and GTP states. Also, the switch II region shows a new conformation, which, as in other structures of free EF-G, is incompatible with FA binding. We have analysed and discussed all known fusA-based fusidic acid resistance mutations in the light of the new structure of EF-G from S. aureus, and a recent structure of T. thermophilus EF-G in complex with the 70S ribosome with fusidic acid [Gao YG et al. (2009) Science326, 694-699]. The mutations can be classified as affecting FA binding, EF-G-ribosome interactions, EF-G conformation, and EF-G stability.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 2010; 42:159-200. [PMID: 20025795 DOI: 10.1017/s0033583509990060] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.
Collapse
|
39
|
Intramolecular movements in EF-G, trapped at different stages in its GTP hydrolytic cycle, probed by FRET. J Mol Biol 2010; 397:1245-60. [PMID: 20219471 DOI: 10.1016/j.jmb.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/24/2022]
Abstract
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5'-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors.
Collapse
|
40
|
Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC. A fast dynamic mode of the EF-G-bound ribosome. EMBO J 2010; 29:770-81. [PMID: 20033061 PMCID: PMC2829159 DOI: 10.1038/emboj.2009.384] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/23/2009] [Indexed: 11/09/2022] Open
Abstract
A key intermediate in translocation is an 'unlocked state' of the pre-translocation ribosome in which the P-site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two- and three-colour smFRET imaging from multiple structural perspectives, EF-G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF-G-bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kevin Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
41
|
Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 2009; 28:2053-65. [PMID: 19536129 DOI: 10.1038/emboj.2009.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G*GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
42
|
Savelsbergh A, Rodnina MV, Wintermeyer W. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA (NEW YORK, N.Y.) 2009; 15:772-80. [PMID: 19324963 PMCID: PMC2673078 DOI: 10.1261/rna.1592509] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/09/2009] [Indexed: 05/22/2023]
Abstract
Elongation factor G (EF-G) promotes the translocation step in bacterial protein synthesis and, together with ribosome recycling factor (RRF), the disassembly of the post-termination ribosome. Unlike translocation, ribosome disassembly strictly requires GTP hydrolysis by EF-G. Here we report that ribosome disassembly is strongly inhibited by vanadate, an analog of inorganic phosphate (Pi), indicating that Pi release is required for ribosome disassembly. In contrast, the function of EF-G in single-round translocation is not affected by vanadate, while the turnover reaction is strongly inhibited. We also show that the antibiotic fusidic acid blocks ribosome disassembly by EF-G/RRF at a 1000-fold lower concentration than required for the inhibition of EF-G turnover in vitro and close to the effective inhibitory concentration in vivo, suggesting that the antimicrobial activity of fusidic acid is primarily due to the direct inhibition of ribosome recycling. Our results indicate that conformational coupling between EF-G and the ribosome is principally different in translocation and ribosome disassembly. Pi release is not required for the mechanochemical function of EF-G in translocation, whereas the interactions between RRF and EF-G introduce tight coupling between the conformational change of EF-G induced by Pi release and ribosome disassembly.
Collapse
Affiliation(s)
- Andreas Savelsbergh
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | |
Collapse
|
43
|
The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form. Proc Natl Acad Sci U S A 2008; 105:15678-83. [PMID: 18836081 DOI: 10.1073/pnas.0807912105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translocation of the tRNA x mRNA complex through the bacterial ribosome is driven by the multidomain guanosine triphosphatase elongation factor G (EF-G). We have used isothermal titration calorimetry to characterize the binding of GDP and GTP to free EF-G at 4 degrees C, 20 degrees C, and 37 degrees C. The binding affinity of EF-G is higher to GDP than to GTP at 4 degrees C, but lower at 37 degrees C. The binding enthalpy and entropy change little with temperature in the case of GDP binding but change greatly in the case of GTP binding. These observations are compatible with a large decrease in the solvent-accessible hydrophobic surface area of EF-G on GTP, but not GDP, binding. The explanation we propose is the locking of the switch 1 and switch 2 peptide loops in the G domain of EF-G to the gamma-phosphate of GTP. From these data, in conjunction with previously reported structural data on guanine nucleotide-bound EF-G, we suggest that EF-G enters the pretranslocation ribosome as an "activity chimera," with the G domain activated by the presence of GTP but the overall factor conformation in the inactive form typical of a GDP-bound multidomain guanosine triphosphatase. We propose that the active overall conformation of EF-G is attained only in complex with the ribosome in its "ratcheted state," with hybrid tRNA binding sites.
Collapse
|
44
|
Moran SJ, Flanagan JF, Namy O, Stuart DI, Brierley I, Gilbert RJC. The mechanics of translocation: a molecular "spring-and-ratchet" system. Structure 2008; 16:664-72. [PMID: 18462671 PMCID: PMC7119126 DOI: 10.1016/j.str.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/02/2008] [Accepted: 04/08/2008] [Indexed: 11/29/2022]
Abstract
The translation of genetic information into proteins is a fundamental process of life. Stepwise addition of amino acids to the growing polypeptide chain requires the coordinated movement of mRNA and tRNAs through the ribosome, a process known as translocation. Here, we review current understanding of the kinetics and mechanics of translocation, with particular emphasis on the structure of a functional mammalian ribosome stalled during translocation by an mRNA pseudoknot. In the context of a pseudoknot-stalled complex, the translocase EF-2 is seen to compress a hybrid-state tRNA into a strained conformation. We propose that this strain energy helps overcome the kinetic barrier to translocation and drives tRNA into the P-site, with EF-2 biasing this relaxation in one direction. The tRNA can thus be considered a molecular spring and EF-2 a Brownian ratchet in a “spring-and-ratchet” system within the translocation process.
Collapse
Affiliation(s)
- Stephen J Moran
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP gamma S.
Collapse
|
46
|
Bartish G, Nygård O. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae. Biochimie 2008; 90:736-48. [DOI: 10.1016/j.biochi.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
47
|
Abstract
In the elongation cycle of translation, translocation is the process that advances the mRNA-tRNA moiety on the ribosome, to allow the next codon to move into the decoding center. New results obtained by cryoelectron microscopy, interpreted in the light of x-ray structures and kinetic data, allow us to develop a model of the molecular events during translocation.
Collapse
|
48
|
Gao N, Zavialov AV, Ehrenberg M, Frank J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 2007; 374:1345-58. [PMID: 17996252 DOI: 10.1016/j.jmb.2007.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/24/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a guanosine 5'-triphosphate (GTP)-hydrolysis-dependent manner. Based on a previous cryo-electron microscopy study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF-containing posttermination ribosome triggers an interdomain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9-A (Fourier shell correlation cutoff of 0.5) cryo-electron microscopy map of a 50S x EF-G x guanosine 5'-[(betagamma)-imido]triphosphate x RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the noncleavable GTP analogue guanosine 5'-[(betagamma)-imido]triphosphate. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in transfer RNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G's domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits.
Collapse
Affiliation(s)
- Ning Gao
- Howard Hughes Medical Institute, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
49
|
Gromadski KB, Schümmer T, Strømgaard A, Knudsen CR, Kinzy TG, Rodnina MV. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA. J Biol Chem 2007; 282:35629-37. [PMID: 17925388 DOI: 10.1074/jbc.m707245200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Balpha (eEF1Balpha), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.1 microm, respectively. Dissociation of nucleotides from eEF1A in the absence of the guanine nucleotide exchange factor is slow (about 0.1 s(-1)) and is accelerated by eEF1Balpha by 320-fold and 250-fold for GDP and GTP, respectively. The rate constant of eEF1Balpha binding to eEF1A (10(7)-10(8) M (-1) s(-1)) is independent of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu.
Collapse
Affiliation(s)
- Kirill B Gromadski
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 2007; 26:2421-31. [PMID: 17446867 PMCID: PMC1864975 DOI: 10.1038/sj.emboj.7601677] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA-tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA-tRNA complex from the decoding center so translocation of the mRNA-tRNA moiety may be completed by a head rotation of the small subunit.
Collapse
Affiliation(s)
- Derek J Taylor
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
| | - Jakob Nilsson
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Gregers Rom Andersen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Poul Nissen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY, 12201-0509 USA. Tel.: +1 518 474 7002; Fax: +1 518 486 2191; E-mail:
| |
Collapse
|