1
|
Disassembly of Amyloid Fibril with Infrared Free Electron Laser. Int J Mol Sci 2023; 24:ijms24043686. [PMID: 36835098 PMCID: PMC9967569 DOI: 10.3390/ijms24043686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The structure is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the fibril state without denaturants. Infrared free electron laser (IR-FEL) is an intense picosecond pulsed laser that is oscillated through a linear accelerator, and the oscillation wavelengths are tunable from 3 μm to 100 μm. Many biological and organic compounds can be structurally altered by the mode-selective vibrational excitations due to the wavelength variability and the high-power oscillation energy (10-50 mJ/cm2). We have found that several different kinds of amyloid fibrils in amino acid sequences were commonly disassembled by the irradiation tuned to amide I (6.1-6.2 μm) where the abundance of β-sheet decreased while that of α-helix increased by the vibrational excitation of amide bonds. In this review, we would like to introduce the IR-FEL oscillation system briefly and describe combination studies of experiments and molecular dynamics simulations on disassembling amyloid fibrils of a short peptide (GNNQQNY) from yeast prion and 11-residue peptide (NFLNCYVSGFH) from β2-microglobulin as representative models. Finally, possible applications of IR-FEL for amyloid research can be proposed as a future outlook.
Collapse
|
2
|
Jindo M, Nakamura K, Okumura H, Tsukiyama K, Kawasaki T. Application study of infrared free-electron lasers towards the development of amyloidosis therapy. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1133-1140. [PMID: 36073871 PMCID: PMC9455209 DOI: 10.1107/s1600577522007330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Amyloidosis is known to be caused by the deposition of amyloid fibrils into various biological tissues; effective treatments for the disease are little established today. An infrared free-electron laser (IR-FEL) is an accelerator-based picosecond-pulse laser having tunable infrared wavelengths. In the current study, the irradiation effect of an IR-FEL was tested on an 11-residue peptide (NFLNCYVSGFH) fibril from β2-microglobulin (β2M) with the aim of applying IR-FELs to amyloidosis therapy. Infrared microspectroscopy (IRM) and scanning electron microscopy showed that a fibril of β2M peptide was clearly dissociated by IR-FEL at 6.1 µm (amide I) accompanied by a decrease of the β-sheet and an increase of the α-helix. No dissociative process was recognized at 6.5 µm (amide II) as well as at 5.0 µm (non-specific wavelength). Equilibrium molecular dynamics simulations indicated that the α-helix can exist stably and the probability of forming interchain hydrogen bonds associated with the internal asparagine residue (N4) is notably reduced compared with other amino acids after the β-sheet is dissociated by amide I specific irradiation. This result implies that N4 plays a key role for recombination of hydrogen bonds in the dissociation of the β2M fibril. In addition, the β-sheet was disrupted at temperatures higher than 340 K while the α-helix did not appear even though the fibril was heated up to 363 K as revealed by IRM. The current study gives solid evidence for the laser-mediated conversion from β-sheet to α-helix in amyloid fibrils at the molecular level.
Collapse
Affiliation(s)
- Mikiko Jindo
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1–3 Kagurazaka, Tokyo 184-8501, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University, Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Koichi Tsukiyama
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, 1–3 Kagurazaka, Tokyo 184-8501, Japan
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
3
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
4
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Theoretical and computational advances in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:1-31. [PMID: 31928722 DOI: 10.1016/bs.apcsb.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Misfolded proteins escape the cellular quality control mechanism and fail to fold properly or remain correctly folded leading to a loss in their functional specificity. Thus misfolding of proteins cause a large number of very different diseases ranging from errors in metabolism to various types of complex neurodegenerative diseases. A theoretical and computational perspective of protein misfolding is presented with a special emphasis on its salient features, mechanism and consequences. These insights quantitatively analyze different determinants of misfolding, that may be applied to design disease specific molecular targets.
Collapse
|
6
|
Nishikawa N, Sakae Y, Gouda T, Tsujimura Y, Okamoto Y. Structural Analysis of a Trimer of β 2-Microgloblin Fragment by Molecular Dynamics Simulations. Biophys J 2019; 116:781-790. [PMID: 30771855 DOI: 10.1016/j.bpj.2018.11.3143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/08/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
A peptide β2-m21-31, which is a fragment from residue 21 to residue 31 of β2-microgloblin, is experimentally known to self-assemble and form amyloid fibrils. In order to understand the mechanism of amyloid fibril formations, we applied the replica-exchange molecular dynamics method to the system consisting of three fragments of β2-m21-31. From the analyses on the temperature dependence, we found that there is a clear phase transition temperature in which the peptides aggregate with each other. Moreover, we found by the free energy analyses that there are two major stable states: One of them is like amyloid fibrils and the other is amorphous aggregates.
Collapse
Affiliation(s)
- Naohiro Nishikawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi, Japan
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Gouda
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Tsujimura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan; Information Technology Center, Nagoya University, Nagoya, Aichi, Japan; JST-CREST, Nagoya, Aichi, Japan.
| |
Collapse
|
7
|
Nishikawa N, Sakae Y, Gouda T, Tsujimura Y, Okamoto Y. Two major stable structures of amyloid-forming peptides: amorphous aggregates and amyloid fibrils. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1359746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naohiro Nishikawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Gouda
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuichiro Tsujimura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Japan
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Information Technology Center, Nagoya University, Nagoya, Japan
- JST-CREST, Nagoya, Japan
| |
Collapse
|
8
|
Nymeyer H. How Efficient Is Replica Exchange Molecular Dynamics? An Analytic Approach. J Chem Theory Comput 2015; 4:626-36. [PMID: 26620937 DOI: 10.1021/ct7003337] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Replica exchange molecular dynamics (REMD) has become a standard technique for accelerating relaxation in biosimulations. Despite its widespread use, questions remain about its efficiency compared with conventional, constant temperature molecular dynamics (MD). An analytic approach is taken to describe the relative efficiency of REMD with respect to MD. This is applied to several simple two-state models and to several real proteins-protein L and the B domain of protein A-to predict the relative efficiency of REMD with respect to MD in actual applications. In agreement with others, we find the following: as long as there is a positive activation energy for folding, REMD is more efficient than MD; the effectiveness of REMD is strongly dependent on the activation enthalpy; and the efficiency of REMD for actual proteins is a strong function of the maximum temperature. Choosing the maximum temperature too high can result in REMD becoming significantly less efficient than conventional MD. A good rule of thumb appears to be to choose the maximum temperature of the REMD simulation slightly above the temperature at which the enthalpy for folding vanishes. Additionally, we find that the number of replicas in REMD, while important for simulations shorter than one or two relaxation times, has a minimal effect on the asymptotic efficiency of the method.
Collapse
Affiliation(s)
- Hugh Nymeyer
- Department of Chemistry & Biochemistry, The School of Computational Science and The Institute for Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4380
| |
Collapse
|
9
|
Fogolari F, Corazza A, Varini N, Rotter M, Gumral D, Codutti L, Rennella E, Viglino P, Bellotti V, Esposito G. Molecular dynamics simulation of β₂-microglobulin in denaturing and stabilizing conditions. Proteins 2010; 79:986-1001. [PMID: 21287627 DOI: 10.1002/prot.22940] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/22/2010] [Accepted: 11/02/2010] [Indexed: 11/11/2022]
Abstract
β₂-Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β₂-microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β₂-microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β₂-microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis-trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native-like trans-conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis-trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β₂-microglobulin provides details of the binding modes of the drug and a rationale for its effect.
Collapse
Affiliation(s)
- Federico Fogolari
- Dipartimento di Scienze e Tecnologie Biomediche, Universita' di Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Todorova N, Hung A, Maaser SM, Griffin MDW, Karas J, Howlett GJ, Yarovsky I. Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II60–70 peptide. Phys Chem Chem Phys 2010; 12:14762-74. [DOI: 10.1039/c0cp00299b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Computational approaches for the design of peptides with anti-breast cancer properties. Future Med Chem 2009; 1:201-12. [DOI: 10.4155/fmc.09.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Breast cancer is the most common cancer among women. Tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment, yet many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Therefore, scientists are searching for breast cancer drugs that have different molecular targets. Methodology: Recently, a computational approach was used to successfully design peptides that are new lead compounds against breast cancer. We used replica exchange molecular dynamics to predict the structure and dynamics of active peptides, leading to the discovery of smaller bioactive peptides. Conclusions: These analogs inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition. We outline the computational methods that were tried and used along with the experimental information that led to the successful completion of this research.
Collapse
|
12
|
Fang PS, Zhao JH, Liu HL, Liu KT, Chen JT, Lin HY, Huang CH, Fang HW. Molecular Dynamics Simulations to Gain Insights into the Stability and Morphologies of K3 Oligomers from β2-microglobulin. J Biomol Struct Dyn 2009; 26:549-59. [DOI: 10.1080/07391102.2009.10507270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Hung A, Griffin MDW, Howlett GJ, Yarovsky I. Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:99-110. [PMID: 18769912 DOI: 10.1007/s00249-008-0363-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
We have performed experimental and computational studies to investigate the influences of phospholipids, methionine oxidation and acidic pH on amyloid fibril formation by a peptide derived from human apolipoprotein C-II (apoC-II), a known component of proteinaceous atherosclerotic plaques. Fibril growth monitored by thioflavin T fluorescence revealed inhibition under lipid-rich and oxidising conditions. We subsequently performed fully-solvated atomistic molecular dynamics (MD) simulations of the peptide monomer to study its conformations under both fibril favouring (neutral and low pH) and inhibiting (lipid-rich and oxidising) conditions. Examination of the chain topology, backbone hydrogen-bonding patterns and aromatic sidechain orientations of the peptide under different conditions reveals that, while the peptide adopts similar structures under the fibril-favouring conditions, significantly different structures are obtained under fibril-disruptive conditions. Based on our results, we advance hypotheses for the roles of peptide conformation on aggregation and fibrillisation propensities.
Collapse
Affiliation(s)
- Andrew Hung
- School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
14
|
Abraham MJ, Gready JE. Ensuring Mixing Efficiency of Replica-Exchange Molecular Dynamics Simulations. J Chem Theory Comput 2008; 4:1119-28. [DOI: 10.1021/ct800016r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark J. Abraham
- Computational Proteomics Group, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT, 2601, Australia
| | - Jill E. Gready
- Computational Proteomics Group, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT, 2601, Australia
| |
Collapse
|
15
|
Miyata T, Hirata F. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution. J Comput Chem 2008; 29:871-82. [PMID: 17963231 DOI: 10.1002/jcc.20844] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have developed an algorithm for sampling the conformational space of large flexible molecules in solution, which combines the molecular dynamics (MD) method and the three-dimensional reference interaction site model (3D-RISM) theory. The solvent-induced force acting on solute atoms was evaluated as the gradient of the solvation free energy with respect to the solute-atom coordinates. To enhance the computation speed, we have applied a multiple timestep algorithm based on the RESPA (Reversible System Propagator Algorithm) to the combined MD/3D-RISM method. By virtue of the algorithm, one can choose a longer timestep for renewing the solvent-induced force compared with that of the conformational update. To illustrate the present MD/3D-RISM simulation, we applied the method to a model of acetylacetone in aqueous solution. The multiple timestep algorithm succeeded in enhancing the computation speed by 3.4 times for this model case. Acetylacetone possesses an intramolecular hydrogen-bonding capability between the hydroxyl group and the carbonyl oxygen atom, and the molecule is significantly stabilized due to this hydrogen bond, especially in gas phase. The intramolecular hydrogen bond was kept intact during almost entire course of the MD simulation in gas phase, while in the aqueous solutions the bond is disrupted in a significant number of conformations. This result qualitatively agrees with the behavior on a free energy barrier lying upon the process for rotating a torsional degree of freedom of the hydroxyl group, where it is significantly reduced in aqueous solution by a cancellation between the electrostatic interaction and the solvation free energy.
Collapse
Affiliation(s)
- Tatsuhiko Miyata
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
16
|
Liang C, Derreumaux P, Wei G. Structure and aggregation mechanism of beta(2)-microglobulin (83-99) peptides studied by molecular dynamics simulations. Biophys J 2007; 93:3353-62. [PMID: 17693474 PMCID: PMC2072067 DOI: 10.1529/biophysj.107.105585] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many human neurodegenerative diseases are associated with amyloid fibril formation. The human 99-residue beta(2)-microglobulin (beta2m) is one of the most intensively studied amyloid-forming proteins. Recent studies show that the C-terminal fragments 72-99, 83-89, and 91-96 form by themselves amyloid fibrils in vitro and play a significant role in fibrillization of the full-length beta2m protein under acidic pH conditions. In this work, we have studied the equilibrium structures of the 17-residue fragment 83-99 in solution, and investigated its dimerization process by multiple molecular dynamics simulations. We find that an intertwined dimer, with the positions of the beta-strands consistent with the results for the monomer, is a possible structure for two beta2m(83-89) peptides. Based on our molecular-dynamics-generated dimeric structure, a protofibril model is proposed for the full-length beta2m protein.
Collapse
Affiliation(s)
- Chungwen Liang
- National Key Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai, China
| | | | | |
Collapse
|
17
|
Kirschner KN, Lexa KW, Salisburg AM, Alser KA, Joseph L, Andersen TT, Bennett JA, Jacobson HI, Shields GC. Computational design and experimental discovery of an antiestrogenic peptide derived from alpha-fetoprotein. J Am Chem Soc 2007; 129:6263-8. [PMID: 17441722 PMCID: PMC4272344 DOI: 10.1021/ja070202w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast cancer is the most common cancer among women, and tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment. Many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Consequently, there is an ongoing need for breast cancer drugs that have different molecular targets. Previous work has shown that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat models, interacting with an unsolved receptor, while peptides smaller than eight amino acids did not. We show that the use of replica exchange molecular dynamics predicts the structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. Simulations identified smaller peptide analogues with the same conserved reverse turn demonstrated in the larger peptides. These analogues were synthesized and shown to inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition.
Collapse
|
18
|
Kamiya N, Mitomo D, Shea JE, Higo J. Folding of the 25 Residue Aβ(12−36) Peptide in TFE/Water: Temperature-Dependent Transition from a Funneled Free-Energy Landscape to a Rugged One. J Phys Chem B 2007; 111:5351-6. [PMID: 17439167 DOI: 10.1021/jp067075v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free-energy landscape of the Alzheimer beta-amyloid peptide Abeta(12-36) in a 40% (v/v) 2,2,2-trifluoroethanol (TFE)/water solution was determined by using multicanonical molecular dynamics simulations. Simulations using this enhanced conformational sampling technique were initiated from a random unfolded polypeptide conformation. Our simulations reliably folded the peptide to the experimental NMR structure, which consists of two linked helices. The shape of the free energy landscape for folding was found to be strongly dependent on temperature: Above 325 K, the overall shape was funnel-like, with the bottom of the funnel coinciding exactly with the NMR structure. Below 325 K, on the other hand, the landscape became increasingly rugged, with the emergence of new conformational clusters connected by low free-energy pathways. Finally, our simulations reveal that water and TFE solvate the polypeptide in different ways: The hydrogen bond formation between TFE and Abeta was enhanced with decreasing temperature, while that between water and Abeta was depressed.
Collapse
Affiliation(s)
- Narutoshi Kamiya
- Clinical Genome Informatics Center, Kobe University, Graduate School of Medicine, 1-5-6 Minatojima-Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
19
|
Wei G, Mousseau N, Derreumaux P. Computational simulations of the early steps of protein aggregation. Prion 2007; 1:3-8. [PMID: 19164927 PMCID: PMC2633700 DOI: 10.4161/pri.1.1.3969] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 12/20/2022] Open
Abstract
There is strong evidence that the oligomers of key proteins, formed during the early steps of aggregation, could be the primary toxic species associated with human neuro-degenerative diseases, such as Alzheimer's and prion diseases. Here, we review recent progress in the development of computational approaches in order to understand the structures, dynamics and free energy surfaces of oligomers. We also discuss possible research directions for the coming years.
Collapse
Affiliation(s)
- Guanghong Wei
- Department of Physics; Fudan University; Shanghai, China
| | - Normand Mousseau
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe; Université de Montréal; Montréal, Québec, Canada
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique; UPR 9080 CNRS, Institut de Biologie Physico-Chimique et Université Paris 7; Paris, France
| |
Collapse
|
20
|
Fogolari F, Corazza A, Viglino P, Zuccato P, Pieri L, Faccioli P, Bellotti V, Esposito G. Molecular dynamics simulation suggests possible interaction patterns at early steps of beta2-microglobulin aggregation. Biophys J 2006; 92:1673-81. [PMID: 17158575 PMCID: PMC1796822 DOI: 10.1529/biophysj.106.098483] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early events in aggregation of proteins are not easily accessible by experiments. In this work, we perform a 5-ns molecular dynamics simulation of an ensemble of 27 copies of beta(2)-microglobulin in explicit solvent. During the simulation, the formation of intermolecular contacts is observed. The simulation highlights the importance of apical residues and, in particular, of those at the N-terminus end of the molecule. The most frequently found pattern of interaction involves a head-to-head contact arrangement of molecules. Hydrophobic contacts appear to be important for the establishment of long-lived (on the simulation timescale) contacts. Although early events on the pathway to aggregation and fibril formation are not directly related to the end-state of the process, which is reached on a much longer timescale, simulation results are consistent with experimental data and in general with a parallel arrangement of intermolecular beta-strand pairs.
Collapse
Affiliation(s)
- Federico Fogolari
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Standley DM, Yonezawa Y, Goto Y, Nakamura H. Flexible docking of an amyloid-forming peptide from β2-microglobulin. FEBS Lett 2006; 580:6199-205. [PMID: 17069810 DOI: 10.1016/j.febslet.2006.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/02/2006] [Accepted: 10/09/2006] [Indexed: 11/26/2022]
Abstract
Using an all-atom, molecular dynamics-based, flexible docking method, the tertiary and quaternary structures of protofilaments of the "K3" fragment from beta(2)-microglobulin (residues Ser20-Lys41) were predicted at low pH in a continuous mixture of water and 2,2,2-trifluoroethanol (TFE). Tetramers with energies very close to the global minimum were produced with C(alpha) root-mean square deviation values under 4A over 88 residues compared to a recently solved SSNMR structure. The most accurate model distinguishes itself from other low-energy solutions in that it shows high structural similarity to another known fold, the parallel beta-helix, in agreement with models proposed previously by several other groups. The method achieves efficiency without loss of generality or atomic detail by enforcing local symmetry on the individual peptides, rewarding intermolecular contacts, and iteratively building up the protofilaments by successively doubling the number of chains. Solvent effects were included in the model by treating the dielectric constant and surface tension as functions of the TFE concentration. In order to understand the physical basis for the stabilizing effects of TFE, the TFE concentration was varied from 0% to 50% (v/v) and a peak in stability was observed at 16%, where the polar and hydrophobic terms cancel out and close to the experimentally determined value of 20%.
Collapse
Affiliation(s)
- Daron M Standley
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
22
|
Baumketner A, Shea JE. Folding Landscapes of the Alzheimer Amyloid-β(12-28) Peptide. J Mol Biol 2006; 362:567-79. [PMID: 16930617 DOI: 10.1016/j.jmb.2006.07.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/12/2006] [Accepted: 07/17/2006] [Indexed: 11/17/2022]
Abstract
The energy landscape for folding of the 12-28 fragment of the Alzheimer amyloid beta (Abeta) peptide is characterized using replica-exchange molecular dynamics simulations with an all-atom peptide model and explicit solvent. At physiological temperatures, the peptide exists mostly as a collapsed random coil, populating a small fraction (less than 10%) of hairpins with a beta-turn at position V18F19, with another 10% of hairpin-like conformations possessing a bend rather than a turn in the central VFFA positions. A small fraction of the populated states, approximately 14%, adopt polyproline II (PPII) conformations. Folding of the structured hairpin states proceeds through the assembly of two locally stable segments, VFFAE and EDVGS. The interactions stabilizing these locally folded structural motifs are in conflict with those stabilizing the global fold of A12-28, a signature of underlying residual frustration in this peptide. At increased temperature, the population of both beta-strand and PPII conformations diminishes in favor of beta-turn and random-coil states. On the basis of the conformational preferences of Abeta 12-28 monomers, two models for the molecular structure of amyloid fibrils formed by this peptide are proposed.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA 93106, USA
| | | |
Collapse
|
23
|
Abstract
The free energy landscape for folding of the Alzheimer's amyloid-beta(25-35) peptide is explored using replica exchange molecular dynamics in both pure water and in HFIP/water cosolvent. This amphiphilic peptide is a natural by-product of the Alzheimer's amyloid-beta(1-40) peptide and retains the toxicity of its full-length counterpart as well as the ability to aggregate into beta-sheet-rich fibrils. Our simulations reveal that the peptide preferentially populates a helical structure in apolar organic solvent, while in pure water, the peptide adopts collapsed coil conformations and to a lesser extent beta-hairpin conformations. The beta-hairpin is characterized by a type II' beta-turn involving residues G29 and A30 and two short beta-strands involving residues N27, K28, I31, and I32. The hairpin is stabilized by backbone hydrogen-bonding interactions between residues K28 and I31; S26 and G33; and by side-chain-to-side-chain interactions between N27 and I32. Implications regarding the mechanism of aggregation of this peptide into fibrils and the role of the environment in modulating secondary structure are discussed.
Collapse
Affiliation(s)
- Guanghong Wei
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | | |
Collapse
|