1
|
Koutakis P, Hernandez H, Miserlis D, Thompson JR, Papoutsi E, Mietus CJ, Haynatzki G, Kim JK, Casale GP, Pipinos II. Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease. NPJ AGING 2024; 10:21. [PMID: 38580664 PMCID: PMC10997596 DOI: 10.1038/s41514-024-00147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Patients with peripheral artery disease (PAD) have increased mortality rates and a myopathy in their affected legs which is characterized by increased oxidative damage, reduced antioxidant enzymatic activity and defective mitochondrial bioenergetics. This study evaluated the hypothesis that increased levels of oxidative damage in gastrocnemius biopsies from patients with PAD predict long-term mortality rates. Oxidative damage was quantified as carbonyl adducts in myofibers of the gastrocnemius of PAD patients. The oxidative stress data were grouped into tertiles and the 5-year, all-cause mortality for each tertile was determined by Kaplan-Meier curves and compared by the Modified Peto test. A Cox-regression model was used to control the effects of clinical characteristics. Results were adjusted for age, sex, race, body mass index, ankle-brachial index, smoking, physical activity, and comorbidities. Of the 240 study participants, 99 died during a mean follow up of 37.8 months. Patients in the highest tertile of oxidative damage demonstrated the highest 5-year mortality rate. The mortality hazard ratios (HR) from the Cox analysis were statistically significant for oxidative damage (lowest vs middle tertile; HR = 6.33; p = 0.0001 and lowest vs highest; HR = 8.37; p < 0.0001). Survival analysis of a contemporaneous population of PAD patients identifies abundance of carbonyl adducts in myofibers of their gastrocnemius as a predictor of mortality rate independently of ankle-brachial index, disease stage and other clinical and myopathy-related covariates.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX, USA.
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hernan Hernandez
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery and Perioperative Care, University of Texas at Austin, Austin, TX, USA
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julian K Kim
- Department of Biology, Baylor University, Waco, TX, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
2
|
Masaki H, Sinomiya D, Okano Y, Yoshida M, Iwabuchi T. Impact of protein carbonylation on the chemical characteristics of the hair surface. Int J Cosmet Sci 2021; 43:764-771. [PMID: 34664283 DOI: 10.1111/ics.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of this study was to clarify the impact of protein carbonylation on the chemical characteristics of the hair surface focusing on hydrophobicity. METHODS First, we examined the validity of methods to evaluate hydrophobicity, one that utilizes the fluorescence of 1-anilinonaphtalene-8-sulfonic acid (1,8-ANS) compared with the contact angles against H2 O, of the hair surface chemically modified by alkaline hydrolysis or treated with stearyl ammonium chloride. We measured hairs bleached with H2 O2 or treated with acrolein for fluorescence originating from 1,8-ANS, for the contact angle and for changes of functional groups, aldehydes (the degree of carbonylation), NH2 , COOH and SH, using fluorescence labelling methods. RESULTS The fluorescence intensity of 1,8-ANS of the hair surface modified chemically correlated well with the contact angles against H2 O. The results indicated that 1,8-ANS is suitable for evaluating the hydrophobicity of the hair surface. The hydrophobicity of hairs bleached with H2 O2 or carbonylated with acrolein was decreased. In addition, changes of functional groups in hairs carbonylated with acrolein increased as did those of hairs bleached with H2 O2 . CONCLUSION The results suggest that the carbonylation of proteins at the hair surface with aldehydes decreases hydrophobicity and promotes further damage as does bleaching.
Collapse
Affiliation(s)
- Hitoshi Masaki
- CIEL Co., Ltd, Kanagawa, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Daisuke Sinomiya
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Yuri Okano
- CIEL Co., Ltd, Kanagawa, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Masaki Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| | - Tokuro Iwabuchi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Yamawaki Y, Mizutani T, Okano Y, Masaki H. Xanthophyll Carotenoids Reduce the Dysfunction of Dermal Fibroblasts to Reconstruct the Dermal Matrix Damaged by Carbonylated Proteins. J Oleo Sci 2021; 70:647-655. [PMID: 33952789 DOI: 10.5650/jos.ess20193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although extracellular carbonylated proteins (CPs) are found at higher levels in sun-exposed skin, their impact on the cellular functions of fibroblasts and their involvement in the progression of photoaging skin are not fully clarified. In our previous study, we reported that extracellular CPs increase levels of intracellular oxidative stress and result in the accumulation of newly synthesized CPs in normal human dermal fibroblasts (NHDF). Furthermore, fibroblasts exposed to CP-BSA, which is a model of extracellular CPs, had upregulated expression levels of mRNAs encoding matrix metalloproteinase-1 (MMP-1) and interleukin-8/CXCL8 (IL-8/CXCL8). These facts suggested the possibility that extracellular CPs induce a fragile structure in the dermis through the degradation of collagen and elastin. The purpose of this study was to characterize the efficacy of natural carotenoids, such as astaxanthin analogs, produced by Hematococus pluvialis (CHPs) to improve the impaired functions of fibroblasts exposed to CPs. CHPs suppressed the intracellular CP levels elevated by CP-BSA, restored mRNA expression levels of factors involved in the formation and assembly of collagen and elastin fibers and improved the formation of those fibers impaired by CP-BSA. We conclude that CHPs function as antiaging substances due to their restoration of the impaired formation of collagen and elastin fibers caused by extracellular soluble CPs.
Collapse
Affiliation(s)
- Yumiko Yamawaki
- CIEL CO., LTD.,School of Bioscience and Biotechnology, Tokyo University of Technology
| | | | | | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
4
|
4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel) 2021; 10:antiox10030365. [PMID: 33670907 PMCID: PMC7997366 DOI: 10.3390/antiox10030365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Solar ultraviolet A (UV-A) radiation promotes a huge variety of damages on connective tissues and dermal fibroblasts, including cellular senescence, a major contributor of skin photoaging. The mechanisms of skin photoaging evoked by UV-A partly involve the generation of reactive oxygen species and lipid peroxidation. We previously reported that 4-hydroxynonenal (HNE), a lipid peroxidation-derived aldehyde, forms adducts on elastin in the skins of UV-A irradiated hairless mice, possibly contributing to actinic elastosis. In the present study, we investigated whether and how HNE promotes fibroblast senescence in skin photoaging. Dermal fibroblasts of skins from UV-A-exposed hairless mice exhibited an increased number of γH2AX foci characteristic of cell senescence, together with an accumulation of HNE adducts partly colocalizing with the cytoskeletal protein vimentin. Murine fibroblasts exposed to UV-A radiation (two cycles of 15 J/cm2), or HNE (30 µM, 4 h), exhibited senescence patterns characterized by an increased γH2AX foci expression, an accumulation of acetylated proteins, and a decreased expression of the sirtuin SIRT1. HNE adducts were detected on vimentin in cultured fibroblasts irradiated by UV-A or incubated with HNE. The HNE scavenger carnosine prevented both vimentin modification and fibroblast senescence evoked by HNE in vitro and in the skins of UV-A-exposed mice. Altogether, these data emphasize the role of HNE and lipid peroxidation-derived aldehydes in fibroblast senescence, and confirm the protective effect of carnosine in skin photoaging.
Collapse
|
5
|
Lipsky ZW, German GK. Ultraviolet light degrades the mechanical and structural properties of human stratum corneum. J Mech Behav Biomed Mater 2019; 100:103391. [DOI: 10.1016/j.jmbbm.2019.103391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
6
|
Carbonylated proteins contribute to the darkness around facial pores. J Dermatol Sci 2018; 89:299-301. [DOI: 10.1016/j.jdermsci.2017.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/24/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022]
|
7
|
Elastin Modification by 4-Hydroxynonenal in Hairless Mice Exposed to UV-A. Role in Photoaging and Actinic Elastosis. J Invest Dermatol 2015; 135:1873-1881. [DOI: 10.1038/jid.2015.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
|
8
|
Vemula V, Ni Z, Fedorova M. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide. Redox Biol 2015; 5:195-204. [PMID: 25974625 PMCID: PMC4434198 DOI: 10.1016/j.redox.2015.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 01/21/2023] Open
Abstract
Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated. Coumarin-hydrazide (CHH) chemical probe was used to label cellular carbonyls. CHH fluorescence microscopy allowed to monitor protein and lipid carbonyl distribution. CHH specificity towards protein- and lipid-bound carbonyls was demonstrated. CHH labeling and DNPH immunocytochemistry for microscopy imaging were compared.
Collapse
Affiliation(s)
- Venukumar Vemula
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Man G, Mauro TM, Kim PL, Hupe M, Zhai Y, Sun R, Crumrine D, Cheung C, Nuno-Gonzalez A, Elias PM, Man MQ. Topical hesperidin prevents glucocorticoid-induced abnormalities in epidermal barrier function in murine skin. Exp Dermatol 2014; 23:645-51. [PMID: 24980072 DOI: 10.1111/exd.12480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
Abstract
Systemic and topical glucocorticoids (GC) can cause significant adverse effects not only on the dermis, but also on epidermal structure and function. In epidermis, a striking GC-induced alteration in permeability barrier function occurs that can be attributed to an inhibition of epidermal mitogenesis, differentiation and lipid production. As prior studies in normal hairless mice demonstrated that topical applications of a flavonoid ingredient found in citrus, hesperidin, improve epidermal barrier function by stimulating epidermal proliferation and differentiation, we assessed here whether its topical applications could prevent GC-induced changes in epidermal function in murine skin and the basis for such effects. When hairless mice were co-treated topically with GC and 2% hesperidin twice-daily for 9 days, hesperidin co-applications prevented the expected GC-induced impairments of epidermal permeability barrier homoeostasis and stratum corneum (SC) acidification. These preventive effects could be attributed to a significant increase in filaggrin expression, enhanced epidermal β-glucocerebrosidase activity and accelerated lamellar bilayer maturation, the last two likely attributable to a hesperidin-induced reduction in stratum corneum pH. Furthermore, co-applications of hesperidin with GC largely prevented the expected GC-induced inhibition of epidermal proliferation. Finally, topical hesperidin increased epidermal glutathione reductase mRNA expression, which could counteract multiple functional negative effects of GC on epidermis. Together, these results show that topical hesperidin prevents GC-induced epidermal side effects by divergent mechanisms.
Collapse
Affiliation(s)
- George Man
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Oxidative damage in the gastrocnemius of patients with peripheral artery disease is myofiber type selective. Redox Biol 2014; 2:921-8. [PMID: 25180168 PMCID: PMC4143812 DOI: 10.1016/j.redox.2014.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023] Open
Abstract
Background Peripheral artery disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in the arteries supplying the legs, affects approximately 5% of Americans. We have previously, demonstrated that a myopathy characterized by myofiber oxidative damage and degeneration is central to PAD pathophysiology. Objectives In this study, we hypothesized that increased oxidative damage in the myofibers of the gastrocnemius of PAD patients is myofiber-type selective and correlates with reduced myofiber size. Methods Needle biopsies were taken from the gastrocnemius of 53 PAD patients (28 with early PAD and 25 with advanced PAD) and 25 controls. Carbonyl groups (marker of oxidative damage), were quantified in myofibers of slide-mounted tissue, by quantitative fluorescence microscopy. Myofiber cross-sectional area was determined from sarcolemma labeled with wheat germ agglutinin. The tissues were also labeled for myosin I and II, permitting quantification of oxidative damage to and relative frequency of the different myofiber Types (Type I, Type II and mixed Type I/II myofibers). We compared PAD patients in early (N=28) vs. advanced (N=25) disease stage for selective, myofiber oxidative damage and altered morphometrics. Results The carbonyl content of gastrocnemius myofibers was higher in PAD patients compared to control subjects, for all three myofiber types (p<0.05). In PAD patients carbonyl content was higher (p<0.05) in Type II and I/II fibers compared to Type I fibers. Furthermore, the relative frequency and cross-sectional area of Type II fibers were lower, while the relative frequencies and cross-sectional area of Type I and Type I/II fibers were higher, in PAD compared to control gastrocnemius (p<0.05). Lastly, the type II-selective oxidative damage increased and myofiber size decreased as the disease progressed from the early to advanced stage. Conclusions Our data confirm increased myofiber oxidative damage and reduced myofiber size in PAD gastrocnemius and demonstrate that the damage is selective for type II myofibers and is worse in the most advanced stage of PAD. Peripheral artery disease, is characterized by the formation of atherosclerotic plaques that limit blood flow to the legs. There was increased myofiber oxidative damage and degeneration in the gastrocnemius of PAD patients compared to controls. Myofiber oxidative damage and morphology were worse for Type II myofibers. Type II-selective oxidative damage and abnormal morphology worsened as the PAD progressed from the early to advanced stage. Myofiber oxidative damage and degeneration is a significant contributors to the pathophysiology of PAD.
Collapse
|
11
|
Zheng R, Heck DE, Mishin V, Black AT, Shakarjian MP, Kong ANT, Laskin DL, Laskin JD. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product. Toxicol Appl Pharmacol 2014; 275:113-21. [PMID: 24423726 DOI: 10.1016/j.taap.2014.01.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/21/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022]
Abstract
4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86-98 fold within 6h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2-/- mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress.
Collapse
Affiliation(s)
- Ruijin Zheng
- Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY, USA
| | - Vladimir Mishin
- Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Adrienne T Black
- Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | - Ah-Ng Tony Kong
- Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Debra L Laskin
- Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
12
|
Weiss DJ, Casale GP, Koutakis P, Nella AA, Swanson SA, Zhu Z, Miserlis D, Johanning JM, Pipinos II. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with peripheral arterial disease. J Transl Med 2013; 11:230. [PMID: 24067235 PMCID: PMC3849592 DOI: 10.1186/1479-5876-11-230] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 01/18/2023] Open
Abstract
Peripheral arterial disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in arteries supplying the legs, affects an estimated 27 million people in Europe and North America. Increased production of reactive oxygen species by dysfunctional mitochondria in leg muscles of PAD patients is viewed as a key mechanism of initiation and progression of the disease. Previous studies demonstrated increased oxidative damage in homogenates of biopsy specimens from PAD gastrocnemius compared to controls, but did not address myofiber-specific damage. In this study, we investigated oxidative damage to myofibers as a possible cause of the myopathy of PAD. To achieve this, we developed and validated fluorescence microscopy procedures for quantitative analysis of carbonyl groups and 4-hydroxy-2-nonenal (HNE) adducts in myofibers of biopsy specimens from human gastrocnemius. PAD and control specimens were evaluated for differences in 1) myofiber content of these two forms of oxidative damage and 2) myofiber cross-sectional area. Furthermore, oxidative damage to PAD myofibers was tested for associations with clinical stage of disease, degree of ischemia in the affected leg, and myofiber cross-sectional area. Carbonyl groups and HNE adducts were increased 30% (p < 0.0001) and 40% (p < 0.0001), respectively, in the myofibers of PAD (N = 34) compared to control (N = 21) patients. Mean cross-sectional area of PAD myofibers was reduced 29.3% compared to controls (p < 0.0003). Both forms of oxidative damage increased with clinical stage of disease, blood flow limitation in the ischemic leg, and reduced myofiber cross-sectional area. The data establish oxidative damage to myofibers as a possible cause of PAD myopathy.
Collapse
Affiliation(s)
- Dustin J Weiss
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-5182, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: Screening of methionine oxidation in keratins by mass spectrometry. J Proteomics 2011; 75:435-49. [DOI: 10.1016/j.jprot.2011.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/10/2011] [Accepted: 08/13/2011] [Indexed: 01/23/2023]
|
14
|
Wagner M, Mavon A, Haidara H, Vallat MF, Duplan H, Roucoules V. From contact angle titration to chemical force microscopy: a new route to assess the pH-dependent character of the stratum corneum. Int J Cosmet Sci 2011; 34:55-63. [DOI: 10.1111/j.1468-2494.2011.00681.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ahmed EK, Rogowska-Wrzesinska A, Roepstorff P, Bulteau AL, Friguet B. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 2010; 9:252-72. [PMID: 20102351 DOI: 10.1111/j.1474-9726.2010.00555.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oxidized proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and by glycation (AGE) have been shown to accumulate with aging in vivo and during replicative senescence in vitro. To better understand the mechanisms by which these damaged proteins build up and potentially affect cellular function during replicative senescence of WI-38 fibroblasts, proteins targeted by these modifications have been identified using a bidimensional gel electrophoresis-based proteomic approach coupled with immunodetection of HNE-, AGE-modified and carbonylated proteins. Thirty-seven proteins targeted for either one of these modifications were identified by mass spectrometry and are involved in different cellular functions such as protein quality control, energy metabolism and cytoskeleton. Almost half of the identified proteins were found to be mitochondrial, which reflects a preferential accumulation of damaged proteins within the mitochondria during cellular senescence. Accumulation of AGE-modified proteins could be explained by the senescence-associated decreased activity of glyoxalase-I, the major enzyme involved in the detoxification of the glycating agents methylglyoxal and glyoxal, in both cytosol and mitochondria. This finding suggests a role of detoxification systems in the age-related build-up of damaged proteins. Moreover, the oxidized protein repair system methionine sulfoxide reductase was more affected in the mitochondria than in the cytosol during cellular senescence. Finally, in contrast to the proteasome, the activity of which is decreased in senescent fibroblasts, the mitochondrial matrix ATP-stimulated Lon-like proteolytic activity is increased in senescent cells but does not seem to be sufficient to cope with the increased load of modified mitochondrial proteins.
Collapse
|
16
|
Schweikert K, Gafner F, Dell’Acqua G. A bioactive complex to protect proteins from UV-induced oxidation in human epidermis. Int J Cosmet Sci 2010; 32:29-34. [DOI: 10.1111/j.1468-2494.2009.00528.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Lin CH, Wang PW, Pan TL, Bazylak G, Liu EKW, Wei FC. Proteomic profiling of oxidative stress in human victims of traffic-related injuries after lower limb revascularization and indication for secondary amputation. J Pharm Biomed Anal 2010; 51:784-94. [DOI: 10.1016/j.jpba.2009.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/30/2009] [Accepted: 07/14/2009] [Indexed: 12/20/2022]
|
18
|
Kobayashi Y, Iwai I, Akutsu N, Hirao T. Increased carbonyl protein levels in the stratum corneum of the face during winter. Int J Cosmet Sci 2008; 30:35-40. [DOI: 10.1111/j.1468-2494.2008.00422.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|