1
|
Drosou M, Comas-Vilà G, Neese F, Salvador P, Pantazis DA. Does Serial Femtosecond Crystallography Depict State-Specific Catalytic Intermediates of the Oxygen-Evolving Complex? J Am Chem Soc 2023; 145:10604-10621. [PMID: 37137865 DOI: 10.1021/jacs.3c00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in serial femtosecond crystallography (SFX) of photosystem II (PSII), enabled by X-ray free electron lasers (XFEL), provided the first geometric models of distinct intermediates in the catalytic S-state cycle of the oxygen-evolving complex (OEC). These models are obtained by flash-advancing the OEC from the dark-stable state (S1) to more oxidized intermediates (S2 and S3), eventually cycling back to the most reduced S0. However, the interpretation of these models is controversial because geometric parameters within the Mn4CaO5 cluster of the OEC do not exactly match those expected from coordination chemistry for the spectroscopically verified manganese oxidation states of the distinct S-state intermediates. Here we focus on the first catalytic transition, S1 → S2, which represents a one-electron oxidation of the OEC. Combining geometric and electronic structure criteria, including a novel effective oxidation state approach, we analyze existing 1-flash (1F) SFX-XFEL crystallographic models that should depict the S2 state of the OEC. We show that the 1F/S2 equivalence is not obvious, because the Mn oxidation states and total unpaired electron counts encoded in these models are not fully consistent with those of a pure S2 state and with the nature of the S1 → S2 transition. Furthermore, the oxidation state definition in two-flashed (2F) structural models is practically impossible to elucidate. Our results advise caution in the extraction of electronic structure information solely from the literal interpretation of crystallographic models and call for re-evaluation of structural and mechanistic interpretations that presume exact correspondence of such models to specific catalytic intermediates of the OEC.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gerard Comas-Vilà
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pedro Salvador
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
|
3
|
Lohmiller T, Krewald V, Navarro MP, Retegan M, Rapatskiy L, Nowaczyk MM, Boussac A, Neese F, Lubitz W, Pantazis DA, Cox N. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S2 state: a combined EPR and DFT study. Phys Chem Chem Phys 2014; 16:11877-92. [DOI: 10.1039/c3cp55017f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W. Detection of the Water-Binding Sites of the Oxygen-Evolving Complex of Photosystem II Using W-Band 17O Electron–Electron Double Resonance-Detected NMR Spectroscopy. J Am Chem Soc 2012; 134:16619-34. [DOI: 10.1021/ja3053267] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Leonid Rapatskiy
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Nicholas Cox
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Anton Savitsky
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - William M. Ames
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Julia Sander
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Marc. M. Nowaczyk
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Matthias Rögner
- Plant
Biochemistry, Ruhr University Bochum, Universitätsstrasse
150, D-44780 Bochum, Germany
| | - Alain Boussac
- iBiTec-S, URA UMR 8221, CEA Saclay,
91191 Gif-sur-Yvette, France
| | - Frank Neese
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Johannes Messinger
- Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå, Sweden
| | - Wolfgang Lubitz
- Max-Planck-Institut für
Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
5
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
6
|
Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions. J Am Chem Soc 2011; 133:19743-57. [PMID: 22092013 DOI: 10.1021/ja2041805] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.
Collapse
Affiliation(s)
- William Ames
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Stich TA, Yeagle GJ, Service RJ, Debus RJ, Britt RD. Ligation of D1-His332 and D1-Asp170 to the manganese cluster of photosystem II from Synechocystis assessed by multifrequency pulse EPR spectroscopy. Biochemistry 2011; 50:7390-404. [PMID: 21790179 DOI: 10.1021/bi2010703] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is used to ascertain the nature of the bonding interactions of various active site amino acids with the Mn ions that compose the oxygen-evolving cluster (OEC) in photosystem II (PSII) from the cyanobacterium Synechocystis sp. PCC 6803 poised in the S(2) state. Spectra of natural isotopic abundance PSII ((14)N-PSII), uniformly (15)N-labeled PSII ((15)N-PSII), and (15)N-PSII containing (14)N-histidine ((14)N-His/(15)N-PSII) are compared. These complementary data sets allow for a precise determination of the spin Hamiltonian parameters of the postulated histidine nitrogen interaction with the Mn ions of the OEC. These results are compared to those from a similar study on PSII isolated from spinach. Upon mutation of His332 of the D1 polypeptide to a glutamate residue, all isotopically sensitive spectral features vanish. Additional K(a)- and Q-band ESEEM experiments on the D1-D170H site-directed mutant give no indication of new (14)N-based interactions.
Collapse
Affiliation(s)
- Troy A Stich
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
8
|
Su JH, Cox N, Ames W, Pantazis DA, Rapatskiy L, Lohmiller T, Kulik LV, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. The electronic structures of the S(2) states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:829-40. [PMID: 21406177 DOI: 10.1016/j.bbabio.2011.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 01/25/2023]
Abstract
The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Ji-Hu Su
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Keßen S, Teutloff C, Kern J, Zouni A, Bittl R. High-Field 2H-Mims-ENDOR Spectroscopy on PSII Single Crystals: Hydrogen Bonding of YD. Chemphyschem 2010; 11:1275-82. [DOI: 10.1002/cphc.200901019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Teutloff C, Pudollek S, Keßen S, Broser M, Zouni A, Bittl R. Electronic structure of the tyrosine D radical and the water-splitting complex from pulsed ENDOR spectroscopy on photosystem II single crystals. Phys Chem Chem Phys 2009; 11:6715-26. [DOI: 10.1039/b908093g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
55Mn-ENDOR of the S2-state multiline signal of Photosystem II from Thermosynechococcus elongatus. Biochem Soc Trans 2008; 36:1001-4. [DOI: 10.1042/bst0361001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulse EPR and 55Mn-ENDOR (electron nuclear double resonance) experiments at 34 GHz (Q-band) were performed on the S2 state of the OEC (oxygen-evolving complex) in PSII (Photosystem II) from Thermosynechococcus elongatus. The ENDOR spectra are discussed with respect to earlier data obtained from X- (9 GHz) and Q-band experiments on PSII preparations from spinach with and without the addition of methanol.
Collapse
|
13
|
Pecoraro VL, Hsieh WY. In search of elusive high-valent manganese species that evaluate mechanisms of photosynthetic water oxidation. Inorg Chem 2008; 47:1765-78. [PMID: 18330968 DOI: 10.1021/ic7017488] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant progress in the understanding of biological water oxidation has occurred during the past 25 years. Today we have a somewhat clearer description of the structure of the Mn4Ca cluster and an idea of the appropriate oxidation states for the enzyme during catalysis. At issue is the mechanism of water oxidation. Depending on one's belief of the manganese ion oxidation levels at the catalytically active S4 configuration, one can invoke a variety of different processes that could lead to water oxidation. We have suggested that the most likely process is the nucleophilic attack of a water bound to calcium (or manganese) onto a highly electrophilic Mn(V)=O center. In this Article, we explore the difficulties of preparing Mn(V) in dimeric systems and the even more arduous task of definitively assigning oxidation states to such highly reactive species.
Collapse
Affiliation(s)
- Vincent L Pecoraro
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | | |
Collapse
|
14
|
Kulik LV, Epel B, Lubitz W, Messinger J. Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 2007; 129:13421-35. [PMID: 17927172 DOI: 10.1021/ja071487f] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.
Collapse
Affiliation(s)
- Leonid V Kulik
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|