1
|
Vizoso Pinto MG, Villegas JM, Peter J, Haase R, Haas J, Lotz AS, Muntau AC, Baiker A. LuMPIS--a modified luminescence-based mammalian interactome mapping pull-down assay for the investigation of protein-protein interactions encoded by GC-low ORFs. Proteomics 2010; 9:5303-8. [PMID: 19834906 DOI: 10.1002/pmic.200900298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The GC content is highly variable among the genomes of different organisms. It has been shown that recombinant gene expression in mammalian cells is much more efficient when GC-rich coding sequences of a certain protein are used. In order to study protein-protein interactions in Varicella zoster virus, a GC-low herpesvirus, we have developed a novel luminescence-based maltose-binding protein pull-down interaction screening system (LuMPIS) that is able to overcome the impaired protein expression levels of GC-low ORFs in mammalian expression systems.
Collapse
|
2
|
Larrat S, Morand P, Bas A, Vigne S, Crance JM, Boyer V, Nicod S, Grossi L, Buisson M, Burmeister WP, Seigneurin JM, Germi R. Inhibition of Epstein–Barr virus replication by small interfering RNA targeting the Epstein–Barr virus protease gene. Antivir Ther 2009. [DOI: 10.1177/135965350901400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The Epstein–Barr virus (EBV) protease (PR), coded by the BVRF2 gene, is essential for the maturation of the viral capsid and viral DNA packaging during the late stage of the EBV lytic cycle. Like the other herpesvirus serine PRs, EBV PR could be a target for the inhibition of EBV replication. To date, no data have been reported on the inhibition of EBV PR messenger RNA (mRNA) by small interfering RNA (siRNA). Methods In this study, siRNAs targeting EBV PR were delivered to the epithelial 293 cell line stably transfected with the complete B95-8 EBV episome. EBV DNA and PR mRNA were quantified by real-time PCR in cells and supernatant, protein expression was assessed by immunoblotting, and production of EBV infectious particles in the culture medium was measured by Raji cell superinfection. Results The EBV PR mRNA within the cells was reduced by 73%, the PR protein by 35% and the amount of virus in the cell supernatant was drastically decreased by 86% or 95%, depending on the method. Conclusions The strong effect of the siRNA targeting EBV PR on EBV replication attests to the crucial role played by EBV PR in the production of infectious particles and suggests that targeting this enzyme can be a new strategy against EBV-associated diseases where virus replication occurs.
Collapse
Affiliation(s)
- Sylvie Larrat
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Patrice Morand
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Ariane Bas
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Solenne Vigne
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Jean-Marc Crance
- Unité de Virologie, Centre de Recherches du Service de Santé des Armées, Grenoble, France
| | - Véronique Boyer
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Sandrine Nicod
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Laurence Grossi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Marlyse Buisson
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Wim P Burmeister
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
| | - Jean-Marie Seigneurin
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| | - Raphaële Germi
- UMI 3265, UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France
- Département de Virologie, Centre Hospitalier Universitaire, Grenoble, France
| |
Collapse
|
3
|
Zhu J, Lu C, Standland M, Lai E, Moreno GN, Umeda A, Jia X, Zhang Z. Single mutation on the surface of Staphylococcus aureus Sortase A can disrupt its dimerization. Biochemistry 2008; 47:1667-74. [PMID: 18193895 DOI: 10.1021/bi7014597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus Sortase A (SrtA) is an important Gram-positive membrane enzyme which catalyzes the anchoring of many cell surface proteins conserved with the LPXTG sequence. Recently SrtA has been demonstrated to be a dimer with a Kd of 55 microM in vitro. Herein, we show that a single point mutation of amino acid residue on the surface of SrtA can completely disrupt the dimerization. Native polyacrylamide gel electrophoresis and analytical gel filtration chromatography were used to detect the dimer-monomer equilibrium of SrtA mutants. Circular dichroism spectrum experiments were performed to study the conformational change of each SrtA mutant. An enzyme activity assay confirmed that all the SrtA mutants were active in vitro. Our results not only are important for understanding the SrtA protein self-associating mechanism but also provided the necessary starting materials for the study of sortase A pathway in vivo, which may have significant implications for discovering microbial physiology and give a potential target for novel Gram-positive antibiotics.
Collapse
Affiliation(s)
- Jie Zhu
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|