1
|
Mandhata CP, Bishoyi AK, Sahoo CR, Maharana S, Padhy RN. Insight to biotechnological utility of phycochemicals from cyanobacterium Anabaena sp.: An overview. Fitoterapia 2023; 169:105594. [PMID: 37343687 DOI: 10.1016/j.fitote.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Cyanobacteria (blue-green algae) are well-known for the ability to excrete extra-cellular products, as a variety of cyanochemicals (phycocompounds) of curio with several extensive therapeutic applications. Among these phycocompound, the cyanotoxins from certain water-bloom forming taxa are toxic to biota, including crocodiles. Failure of current non-renewable source compounds in producing sustainable and non-toxic therapeutics led the urgency of discovering products from natural sources. Particularly, compounds of the filamentous N2-fixing Anabaena sp. have effective antibacterial, antifungal, antioxidant, and anticancer properties. Today, such newer compounds are the potential targets for the possible novel chemical scaffolds, suitable for mainstream-drug development cascades. Bioactive compounds of Anabaena sp. such as, anatoxins, hassallidins and phycobiliproteins have proven their inherent antibacterial, antifungal, and antineoplastic activities, respectively. Herein, the available details of the biomass production and the inherent phyco-constituents namely, alkaloids, lipids, phenols, peptides, proteins, polysaccharides, terpenoids and cyanotoxins are considered, along with geographical distributions and morphological characteristics of the cyanobacterium. The acquisitions of cyanochemicals in recent years have newly addressed several pharmaceutical aliments, and the understanding of the associated molecular interactions of phycochemicals have been considered, for plausible use in drug developments in future.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
2
|
Sarasa-Buisan C, Guío J, Peleato ML, Fillat MF, Sevilla E. Expanding the FurC (PerR) regulon in Anabaena (Nostoc) sp. PCC 7120: Genome-wide identification of novel direct targets uncovers FurC participation in central carbon metabolism regulation. PLoS One 2023; 18:e0289761. [PMID: 37549165 PMCID: PMC10406281 DOI: 10.1371/journal.pone.0289761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
FurC (PerR, Peroxide Response Regulator) from Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120) is a master regulator engaged in the modulation of relevant processes including the response to oxidative stress, photosynthesis and nitrogen fixation. Previous differential gene expression analysis of a furC-overexpressing strain (EB2770FurC) allowed the inference of a putative FurC DNA-binding consensus sequence. In the present work, more data concerning the regulon of the FurC protein were obtained through the searching of the putative FurC-box in the whole Anabaena sp. PCC 7120 genome. The total amount of novel FurC-DNA binding sites found in the promoter regions of genes with known function was validated by electrophoretic mobility shift assays (EMSA) identifying 22 new FurC targets. Some of these identified targets display relevant roles in nitrogen fixation (hetR and hgdC) and carbon assimilation processes (cmpR, glgP1 and opcA), suggesting that FurC could be an additional player for the harmonization of carbon and nitrogen metabolisms. Moreover, differential gene expression of a selection of newly identified FurC targets was measured by Real Time RT-PCR in the furC-overexpressing strain (EB2770FurC) comparing to Anabaena sp. PCC 7120 revealing that in most of these cases FurC could act as a transcriptional activator.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Jorge Guío
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - M. Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel) 2014; 4:745-69. [PMID: 25411927 PMCID: PMC4284465 DOI: 10.3390/life4040745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Second messengers are intracellular substances regulated by specific external stimuli globally known as first messengers. Cells rely on second messengers to generate rapid responses to environmental changes and the importance of their roles is becoming increasingly realized in cellular signaling research. Cyanobacteria are photooxygenic bacteria that inhabit most of Earth's environments. The ability of cyanobacteria to survive in ecologically diverse habitats is due to their capacity to adapt and respond to environmental changes. This article reviews known second messenger-controlled physiological processes in cyanobacteria. Second messengers used in these systems include the element calcium (Ca2+), nucleotide-based guanosine tetraphosphate or pentaphosphate (ppGpp or pppGpp, represented as (p)ppGpp), cyclic adenosine 3',5'-monophosphate (cAMP), cyclic dimeric GMP (c-di-GMP), cyclic guanosine 3',5'-monophosphate (cGMP), and cyclic dimeric AMP (c-di-AMP), and the gaseous nitric oxide (NO). The discussion focuses on processes central to cyanobacteria, such as nitrogen fixation, light perception, photosynthesis-related processes, and gliding motility. In addition, we address future research trajectories needed to better understand the signaling networks and cross talk in the signaling pathways of these molecules in cyanobacteria. Second messengers have significant potential to be adapted as technological tools and we highlight possible novel and practical applications based on our understanding of these molecules and the signaling networks that they control.
Collapse
|
4
|
Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci U S A 2014; 111:6762-7. [PMID: 24753612 DOI: 10.1073/pnas.1323570111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptolyngbya boryana (Plectonema boryanum) is a diazotrophic cyanobacterium lacking heterocysts. How nitrogen fixation is regulated in filamentous nonheterocystous cyanobacteria remains unclear. Here we describe a large 50-kb nitrogen fixation (nif) gene cluster in L. boryana containing 50 genes. This gene cluster contains 14 nif genes (nifBSUHDKVZT and nifPENXW), two genes encoding transcriptional regulators showing high similarity to ChlR (chlorophyll regulator) and PatB, three genes encoding ferredoxin, three genes encoding cytochrome oxidase subunits, and 28 genes encoding nif-related proteins and proteins with putative or unknown functions. Eleven mutants lacking one gene or a subset of genes were isolated. Five of them did not grow under diazotrophic conditions, including two mutants lacking the transcriptional regulators. Although the chlR homolog-lacking mutant showed a normal level of nitrogenase activity, various intermediates of chlorophyll biosynthesis were accumulated under micro-oxic conditions. The phenotype suggested that ChlR activates the expression of the genes responsible for anaerobic chlorophyll biosynthesis to support energy supply for nitrogen fixation. In another mutant lacking the patB homolog, no transcripts of any nif genes were detected under nitrogen fixation conditions, which was consistent with no activity. Constitutive expression of patB in a shuttle vector resulted in low but significant nitrogenase activity even under nitrate-replete conditions, suggesting that the PatB homolog is the master regulator of nitrogen fixation. We propose to rename the patB homolog as cnfR, after cyanobacterial nitrogen fixation regulator.
Collapse
|
5
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
6
|
Yoshimura H, Kaneko Y, Ehira S, Yoshihara S, Ikeuchi M, Ohmori M. CccS and CccP are involved in construction of cell surface components in the cyanobacterium Synechocystis sp. strain PCC 6803. PLANT & CELL PHYSIOLOGY 2010; 51:1163-72. [PMID: 20538620 DOI: 10.1093/pcp/pcq081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have previously identified two target genes (slr1667 and slr1668) for transcriptional regulation by a cAMP receptor protein, SYCRP1, in a cAMP-dependent manner. For this study we investigated the localizations of products of slr1667 and slr1668 (designated cccS and cccP, respectively) biochemically and immunocytochemically, and examined the phenotypes of their disruptants. CccS protein was detected in the culture medium and the acid-soluble fraction containing proteins derived from outside the outer membrane. Disruptants of cccS and cccP showed a more or less similar pleiotropic phenotype. Several proteins secreted into the culture medium or retained on the outside of the outer membrane were greatly reduced in both disruptants compared with the wild type. Electron microscopy revealed that the cccS disruptant lacked the thick pili responsible for motility and that the cccP disruptant had almost no discernible thick pili on its cell surface. Both disruptants largely secreted far greater amounts of yellow pigments into the culture medium than did the wild type. Furthermore, the disruptions reduced the amount of UV-absorbing compound(s) extractable from the exopolysaccharide layer. These results suggest that the cccS and cccP genes are involved in the construction of cell surface components in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Hidehisa Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo. 153-8902 Japan.
| | | | | | | | | | | |
Collapse
|
7
|
RNA processing of nitrogenase transcripts in the cyanobacterium Anabaena variabilis. J Bacteriol 2010; 192:3311-20. [PMID: 20435734 DOI: 10.1128/jb.00278-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the regulation of nitrogenase genes in cyanobacteria. Transcription of the nifH1 and vnfH genes, encoding dinitrogenase reductases for the heterocyst-specific Mo-nitrogenase and the alternative V-nitrogenase, respectively, was studied by using a lacZ reporter. Despite evidence for a transcription start site just upstream of nifH1 and vnfH, promoter fragments that included these start sites did not drive the transcription of lacZ and, for nifH1, did not drive the expression of nifHDK1. Further analysis using larger regions upstream of nifH1 indicated that a promoter within nifU1 and a promoter upstream of nifB1 both contributed to expression of nifHDK1, with the nifB1 promoter contributing to most of the expression. Similarly, while the region upstream of vnfH, containing the putative transcription start site, did not drive expression of lacZ, the region that included the promoter for the upstream gene, ava4055, did. Characterization of the previously reported nifH1 and vnfH transcriptional start sites by 5'RACE (5' rapid amplification of cDNA ends) revealed that these 5' ends resulted from processing of larger transcripts rather than by de novo transcription initiation. The 5' positions of both the vnfH and nifH1 transcripts lie at the base of a stem-loop structure that may serve to stabilize the nifHDK1 and vnfH specific transcripts compared to the transcripts for other genes in the operons providing the proper stoichiometry for the Nif proteins for nitrogenase synthesis.
Collapse
|
8
|
Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN, Chen P, Ma KT, Zhou CY. β-Catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. Biochem Biophys Res Commun 2009; 390:258-62. [DOI: 10.1016/j.bbrc.2009.09.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022]
|
9
|
Drawid A, Gupta N, Nagaraj VH, Gélinas C, Sengupta AM. OHMM: a Hidden Markov Model accurately predicting the occupancy of a transcription factor with a self-overlapping binding motif. BMC Bioinformatics 2009; 10:208. [PMID: 19583839 PMCID: PMC2718928 DOI: 10.1186/1471-2105-10-208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/07/2009] [Indexed: 12/29/2022] Open
Abstract
Background DNA sequence binding motifs for several important transcription factors happen to be self-overlapping. Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites. Moreover, most methods use arbitrary thresholds and fail to provide a biophysical interpretation of statistical quantities. In addition, commonly used approaches do not include the location of a site with respect to the transcription start site (TSS) in an integrated probabilistic framework while identifying sites. Ignoring these features can lead to inaccurate predictions as well as incorrect design and interpretation of experimental results. Results We have developed a tool based on a Hidden Markov Model (HMM) that identifies binding location of transcription factors with preference for self-overlapping DNA motifs by combining the effects of their alternative binding modes. Interpreting HMM parameters as biophysical quantities, this method uses the occupancy probability of a transcription factor on a DNA sequence as the discriminant function, earning the algorithm the name OHMM: Occupancy via Hidden Markov Model. OHMM learns the classification threshold by training emission probabilities using unaligned sequences containing known sites and estimating transition probabilities to reflect site density in all promoters in a genome. While identifying sites, it adjusts parameters to model site density changing with the distance from the transcription start site. Moreover, it provides guidance for designing padding sequences in gel shift experiments. In the context of binding sites to transcription factor NF-κB, we find that the occupancy probability predicted by OHMM correlates well with the binding affinity in gel shift experiments. High evolutionary conservation scores and enrichment in experimentally verified regulated genes suggest that NF-κB binding sites predicted by our method are likely to be functional. Conclusion Our method deals specifically with identifying locations with multiple overlapping binding sites by computing the local occupancy of the transcription factor. Moreover, considering OHMM as a biophysical model allows us to learn the classification threshold in a principled manner. Another feature of OHMM is that we allow transition probabilities to change with location relative to the TSS. OHMM could be used to predict physical occupancy, and provides guidance for proper design of gel-shift experiments. Based upon our predictions, new insights into NF-κB function and regulation and possible new biological roles of NF-κB were uncovered.
Collapse
Affiliation(s)
- Amar Drawid
- BioMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | |
Collapse
|
10
|
Xu M, Su Z. Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes. BMC Genomics 2009; 10:23. [PMID: 19146659 PMCID: PMC2633013 DOI: 10.1186/1471-2164-10-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 01/15/2009] [Indexed: 11/30/2022] Open
Abstract
Background Cyclic AMP receptor protein (CRP), also known as catabolite gene activator protein (CAP), is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The loss of CRPs in these species leads to the rapid loss of their binding sites in the genomes.
Collapse
Affiliation(s)
- Minli Xu
- Department of Bioinformatics and Genomics, Bioinformatics Research Center, the University of North Carolina at Charlotte, Charlotte, NC 28233, USA.
| | | |
Collapse
|
11
|
|
12
|
Higo A, Ikeuchi M, Ohmori M. cAMP regulates respiration and oxidative stress during rehydration in Anabaena sp. PCC 7120. FEBS Lett 2008; 582:1883-8. [PMID: 18498771 DOI: 10.1016/j.febslet.2008.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
Cellular cAMP level increased dramatically upon rehydration following dehydration for 24h in Anabaena sp. PCC 7120, but not in disruptant of an adenylate cyclase gene, cyaC. Oxygen consumption in the cyaC disruptant upon rehydration was higher than that in wild-type strain. Determination of lipid peroxidation and protein carbonylation of the cells revealed greater oxidative stress in the cyaC disruptant than in the wild-type strain during rehydration. Addition of cAMP or KCN to the cyaC disruptant decreased cellular oxygen consumption upon rehydration and oxidative damage. These results suggest that respiration upon rehydration is regulated by cAMP and that the higher respiration activity results in more oxidative damage in cyaC disruptant.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Department of Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | | | | |
Collapse
|