1
|
Baeta T, Giandoreggio-Barranco K, Ayala I, Moura ECCM, Sperandeo P, Polissi A, Simorre JP, Laguri C. The lipopolysaccharide-transporter complex LptB 2FG also displays adenylate kinase activity in vitro dependent on the binding partners LptC/LptA. J Biol Chem 2021; 297:101313. [PMID: 34673027 PMCID: PMC8633020 DOI: 10.1016/j.jbc.2021.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers–LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.
Collapse
Affiliation(s)
- Tiago Baeta
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabel Ayala
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| |
Collapse
|
2
|
Szöllősi D, Szakács G, Chiba P, Stockner T. Dissecting the Forces that Dominate Dimerization of the Nucleotide Binding Domains of ABCB1. Biophys J 2018; 114:331-342. [PMID: 29401431 PMCID: PMC5984967 DOI: 10.1016/j.bpj.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (∼-42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun 2017; 8:1336. [PMID: 29109439 PMCID: PMC5673888 DOI: 10.1038/s41467-017-01399-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/13/2017] [Indexed: 01/17/2023] Open
Abstract
The MacA-MacB-TolC tripartite complex is a transmembrane machine that spans both plasma membrane and outer membrane and actively extrudes substrates, including macrolide antibiotics, virulence factors, peptides and cell envelope precursors. These transport activities are driven by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. Here, we present the crystal structure of MacB at 3.4-Å resolution. MacB forms a dimer in which each protomer contains a nucleotide-binding domain and four transmembrane helices that protrude in the periplasm into a binding domain for interaction with the membrane fusion protein MacA. MacB represents an ABC transporter in pathogenic microorganisms with unique structural features.
Collapse
|
4
|
Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta Gen Subj 2014; 1850:461-75. [PMID: 24746984 DOI: 10.1016/j.bbagen.2014.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
5
|
ATP binding to two sites is necessary for dimerization of nucleotide-binding domains of ABC proteins. Biochem Biophys Res Commun 2013; 443:97-102. [PMID: 24269240 DOI: 10.1016/j.bbrc.2013.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023]
Abstract
ATP binding cassette (ABC) transporters have a functional unit formed by two transmembrane domains and two nucleotide binding domains (NBDs). ATP-bound NBDs dimerize in a head-to-tail arrangement, with two nucleotides sandwiched at the dimer interface. Both NBDs contribute residues to each of the two nucleotide-binding sites (NBSs) in the dimer. In previous studies, we showed that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii forms ATP-bound dimers that dissociate completely following hydrolysis of one of the two bound ATP molecules. Since hydrolysis of ATP at one NBS is sufficient to drive dimer dissociation, it is unclear why all ABC proteins contain two NBSs. Here, we used luminescence resonance energy transfer (LRET) to study ATP-induced formation of NBD homodimers containing two NBSs competent for ATP binding, and NBD heterodimers with one active NBS and one binding-defective NBS. The results showed that binding of two ATP molecules is necessary for NBD dimerization. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dissociation, but two binding sites are required to form the ATP-sandwich NBD dimer necessary for hydrolysis.
Collapse
|
6
|
Degiorgio D, Corsetto PA, Rizzo AM, Colombo C, Seia M, Costantino L, Montorfano G, Tomaiuolo R, Bordo D, Sansanelli S, Li M, Tavian D, Rastaldi MP, Coviello DA. Two ABCB4 point mutations of strategic NBD-motifs do not prevent protein targeting to the plasma membrane but promote MDR3 dysfunction. Eur J Hum Genet 2013; 22:633-9. [PMID: 24045840 DOI: 10.1038/ejhg.2013.214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/27/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
The ABCB4 gene encodes for MDR3, a protein that translocates phosphatidylcholine from the inner to the outer leaflet of the hepatocanalicular membrane; its deficiency favors the formation of 'toxic bile'. Several forms of hepatobiliary diseases have been associated with ABCB4 mutations, but the detrimental effects of most mutations on the encoded protein needs to be clarified. Among subjects with cholangiopathies who were screened for mutations in ABCB4 by direct sequencing, we identified the new mutation p.(L481R) in three brothers. According to our model of tertiary structure, this mutation affects the Q-loop, whereas the p.(Y403H) mutation, that we already described in two other families, involves the A-loop. This study was aimed at analyzing the functional relevance of these two ABCB4 mutations: MDR3 expression and lipid content in the culture supernatant were evaluated in cell lines stably transfected with the ABCB4 wild-type clone and corresponding mutants. No differences of expression were observed between wild-type and mutant gene products. Instead, both mutations caused a reduction of phosphatidylcholine secretion compared with the wild-type transfected cell lines. On the contrary, cholesterol (Chol) release, after 1 and 3 mM sodium taurocholate stimulation, was higher in the mutant-transfected cell lines than that in the wild-type and was particularly enhanced in cells transfected with the p.Y403H-construct.In summary, our data show that both mutations do not seem to affect protein expression, but are able to reduce the efflux of phosphatidylcholine associated with increase of Chol, thereby promoting the formation of toxic bile.
Collapse
Affiliation(s)
- Dario Degiorgio
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola A Corsetto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Angela M Rizzo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Carla Colombo
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Seia
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucy Costantino
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gigliola Montorfano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Rossella Tomaiuolo
- 1] Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy [2] CEINGE, Advanced Biotechnologies scarl, Naples, Italy
| | - Domenico Bordo
- IRCCS Azienda Ospedaliera-Universitaria San Martino - IST. Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Sansanelli
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Daniela Tavian
- CRIBENS-Laboratory of Cellular Biochemistry and Molecular Biology, Catholic University of the Sacred Heart, Milan, Italy
| | - Maria P Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | | |
Collapse
|
7
|
Lu S, Zgurskaya HI. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter. Mol Microbiol 2012; 86:1132-43. [PMID: 23057817 DOI: 10.1111/mmi.12046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 11/30/2022]
Abstract
MacB is a founding member of the Macrolide Exporter family of transporters belonging to the ATP-Binding Cassette superfamily. These proteins are broadly represented in genomes of both Gram-positive and Gram-negative bacteria and are implicated in virulence and protection against antibiotics and peptide toxins. MacB transporter functions together with MacA, a periplasmic membrane fusion protein, which stimulates MacB ATPase. In Gram-negative bacteria, MacA is believed to couple ATP hydrolysis to transport of substrates across the outer membrane through a TolC-like channel. In this study, we report a real-time analysis of concurrent ATP hydrolysis and assembly of MacAB-TolC complex. MacB binds nucleotides with a low millimolar affinity and fast on- and off-rates. In contrast, MacA-MacB complex is formed with a nanomolar affinity, which further increases in the presence of ATP. Our results strongly suggest that association between MacA and MacB is stimulated by ATP binding to MacB but remains unchanged during ATP hydrolysis cycle. We also found that the large periplasmic loop of MacB plays the major role in coupling reactions separated in two different membranes. This loop is required for MacA-dependent stimulation of MacB ATPase and at the same time, contributes to recruitment of TolC into a trans-envelope complex.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Science Research Center, Norman, OK 73019, USA
| | | |
Collapse
|
8
|
Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:725-37. [DOI: 10.1016/j.bbapap.2008.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 01/15/2023]
|
9
|
Becker JP, Depret G, Van Bambeke F, Tulkens PM, Prévost M. Molecular models of human P-glycoprotein in two different catalytic states. BMC STRUCTURAL BIOLOGY 2009; 9:3. [PMID: 19159494 PMCID: PMC2661087 DOI: 10.1186/1472-6807-9-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 01/22/2009] [Indexed: 12/20/2022]
Abstract
Background P-glycoprotein belongs to the family of ATP-binding cassette proteins which hydrolyze ATP to catalyse the translocation of their substrates through membranes. This protein extrudes a large range of components out of cells, especially therapeutic agents causing a phenomenon known as multidrug resistance. Because of its clinical interest, its activity and transport function have been largely characterized by various biochemical studies. In the absence of a high-resolution structure of P-glycoprotein, homology modeling is a useful tool to help interpretation of experimental data and potentially guide experimental studies. Results We present here three-dimensional models of two different catalytic states of P-glycoprotein that were developed based on the crystal structures of two bacterial multidrug transporters. Our models are supported by a large body of biochemical data. Measured inter-residue distances correlate well with distances derived from cross-linking data. The nucleotide-free model features a large cavity detected in the protein core into which ligands of different size were successfully docked. The locations of docked ligands compare favorably with those suggested by drug binding site mutants. Conclusion Our models can interpret the effects of several mutants in the nucleotide-binding domains (NBDs), within the transmembrane domains (TMDs) or at the NBD:TMD interface. The docking results suggest that the protein has multiple binding sites in agreement with experimental evidence. The nucleotide-bound models are exploited to propose different pathways of signal transmission upon ATP binding/hydrolysis which could lead to the elaboration of conformational changes needed for substrate translocation. We identified a cluster of aromatic residues located at the interface between the NBD and the TMD in opposite halves of the molecule which may contribute to this signal transmission. Our models may characterize different steps in the catalytic cycle and may be important tools to understand the structure-function relationship of P-glycoprotein.
Collapse
Affiliation(s)
- Jean-Paul Becker
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|