1
|
Song X, Wang W, Wang H, Yuan X, Yang F, Zhao L, Mullen M, Du S, Zohbi N, Muthusamy S, Cao Y, Jiang J, Xia P, He P, Ding M, Emmett N, Ma M, Wu Q, Green HN, Ding X, Wang D, Wang F, Liu X. Acetylation of ezrin regulates membrane-cytoskeleton interaction underlying CCL18-elicited cell migration. J Mol Cell Biol 2021; 12:424-437. [PMID: 31638145 PMCID: PMC7333480 DOI: 10.1093/jmcb/mjz099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ezrin, a membrane–cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Optics and Optical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Lingli Zhao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Shihao Du
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Najdat Zohbi
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Saravanakumar Muthusamy
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Yalei Cao
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Jiying Jiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Ping He
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Nerimah Emmett
- Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Mingming Ma
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Quan Wu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Hadiyah-Nicole Green
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Xia Ding
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengsong Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,School of Life Science, Anhui Medical University, Hefei, China
| | - Xing Liu
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| |
Collapse
|
2
|
Wang X, Wang W, Wang X, Wang M, Zhu L, Garba F, Fu C, Zieger B, Liu X, Liu X, Yao X. The septin complex links the catenin complex to the actin cytoskeleton for establishing epithelial cell polarity. J Mol Cell Biol 2021; 13:395-408. [PMID: 34143183 PMCID: PMC8436676 DOI: 10.1093/jmcb/mjab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is essential for spatially regulating of physiological processes in metazoans by which hormonal stimulation‒secretion coupling is precisely coupled for tissue homeostasis and organ communications. However, the molecular mechanisms underlying epithelial cell polarity establishment remain elusive. Here, we show that septin cytoskeleton interacts with catenin complex to organize a functional domain to separate apical from basal membranes in polarized epithelial cells. Using polarized epithelial cell monolayer as a model system with transepithelial electrical resistance as functional readout, our studies show that septins are essential for epithelial cell polarization. Our proteomic analyses discovered a novel septin‒catenin complex during epithelial cell polarization. The functional relevance of septin‒catenin complex was then examined in three-dimensional (3D) culture in which suppression of septins resulted in deformation of apical lumen in cysts, a hallmark seen in polarity-deficient 3D cultures and animals. Mechanistically, septin cytoskeleton stabilizes the association of adherens catenin complex with actin cytoskeleton, and depletion or disruption of septin cytoskeleton liberates adherens junction and polarity complexes into the cytoplasm. Together, these findings reveal a previously unrecognized role for septin cytoskeleton in the polarization of the apical‒basal axis and lumen formation in polarized epithelial cells.
Collapse
Affiliation(s)
- Xueying Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Wenwen Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xiwei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Ming Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Lijuan Zhu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Fatima Garba
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Chuanhai Fu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.,Anhui Key Laboratory for Cellular Dynamics & Chemical Biology and CAS Center for Excellence in Molecular Cell Science, Hefei 230027, China
| |
Collapse
|
3
|
Leguay K, Decelle B, He YY, Pagniez A, Hogue M, Kobayashi H, Le Gouill C, Bouvier M, Carréno S. Development of conformational BRET biosensors that monitor ezrin, radixin and moesin activation in real time. J Cell Sci 2021; 134:237806. [PMID: 33712451 DOI: 10.1242/jcs.255307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Ezrin, radixin and moesin compose the family of ERM proteins. They link actin filaments and microtubules to the plasma membrane to control signaling and cell morphogenesis. Importantly, their activity promotes invasive properties of metastatic cells from different cancer origins. Therefore, a precise understanding of how these proteins are regulated is important for the understanding of the mechanism controlling cell shape, as well as providing new opportunities for the development of innovative cancer therapies. Here, we developed and characterized novel bioluminescence resonance energy transfer (BRET)-based conformational biosensors, compatible with high-throughput screening, that monitor individual ezrin, radixin or moesin activation in living cells. We showed that these biosensors faithfully monitor ERM activation and can be used to quantify the impact of small molecules, mutation of regulatory amino acids or depletion of upstream regulators on their activity. The use of these biosensors allowed us to characterize the activation process of ERMs that involves a pool of closed-inactive ERMs stably associated with the plasma membrane. Upon stimulation, we discovered that this pool serves as a cortical reserve that is rapidly activated before the recruitment of cytoplasmic ERMs.
Collapse
Affiliation(s)
- Kévin Leguay
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Barbara Decelle
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Yu Yan He
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Anthony Pagniez
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Mireille Hogue
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hiroyuki Kobayashi
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Christian Le Gouill
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michel Bouvier
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Sébastien Carréno
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Marcotti S, Maki K, Reilly GC, Lacroix D, Adachi T. Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study. PLoS One 2018; 13:e0206056. [PMID: 30359403 PMCID: PMC6201909 DOI: 10.1371/journal.pone.0206056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022] Open
Abstract
The hyaluronic acid component of the glycocalyx plays a role in cell mechanotransduction by selectively transmitting mechanical signals to the cell cytoskeleton or to the cell membrane. The aim of this study was to evaluate the mechanical link between the hyaluronic acid molecule and the cell cytoskeleton by means of atomic force microscopy single molecule force spectroscopy. Hyaluronic acid molecules on live cells were targeted with probes coated with hyaluronic acid binding protein. Two different types of events were observed when the detachment of the target molecule from the probe occurred, suggesting the presence of cytoskeleton- and membrane-anchored molecules. Membrane-anchored molecules facilitated the formation of tethers when pulled. About 15% of the tested hyaluronic acid molecules were shown to be anchored to the cytoskeleton. When multiple molecules bonded to the probe, specific detachment patterns were observed, suggesting that a cytoskeletal bond needed to be broken to improve the ability to pull tethers from the cell membrane. This likely resulted in the formation of tethering structures maintaining a cytoskeletal core similar to the ones observed for cells over-expressing HA synthases. The different observed rupture events were associated with separate mechanotransductive mechanisms in an analogous manner to that previously proposed for the endothelial glycocalyx. Single cytoskeleton anchored rupture events represent HA molecules linked to the cytoskeleton and therefore transmitting mechanical stimuli into the inner cell compartments. Single membrane tethers would conversely represent the glycocalyx molecules connected to areas of the membrane where an abundance of signalling molecules reside.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Koichiro Maki
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
| | - Gwendolen C. Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Taiji Adachi
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Fang C, Hui TH, Wei X, Yan Z, Qian J, Lin Y. Interaction and fusion dynamics between cellular blebs. J Biomech 2018; 81:113-121. [PMID: 30366658 DOI: 10.1016/j.jbiomech.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022]
Abstract
Membrane blebbing, as a mechanism for cells to regulate their internal pressure and membrane tension, is believed to play important roles in processes such as cell migration, spreading and apoptosis. However, the fundamental question of how different blebs interact with each other during their life cycles remains largely unclear. Here, we report a combined theoretical and experimental investigation to examine how the growth and retraction of a cellular bleb are influenced by neighboring blebs as well as the fusion dynamics between them. Specifically, a boundary integral model was developed to describe the shape evolution of cell membrane during the blebbing/retracting process. We showed that a drop in the intracellular pressure will be induced by the formation of a bleb whose retraction then restores the pressure level. Consequently, the volume that a second bleb can reach was predicted to heavily depend on its initial weakened size and the time lag with respect to the first bleb, all in quantitative agreement with our experimental observations. In addition, it was found that as the strength of membrane-cortex adhesion increases, the possible coalescence of two neighboring blebs changes from smooth fusion to abrupt coalescence and eventually to no fusion at all. Phase diagrams summarizing the dependence of such transition on key physical factors, such as the intracellular pressure and bleb separation, were also obtained.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Tsz Hin Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xi Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Zishen Yan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Tsai FC, Bertin A, Bousquet H, Manzi J, Senju Y, Tsai MC, Picas L, Miserey-Lenkei S, Lappalainen P, Lemichez E, Coudrier E, Bassereau P. Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. eLife 2018; 7:37262. [PMID: 30234483 PMCID: PMC6167055 DOI: 10.7554/elife.37262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin’s enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD’s specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Aurelie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Hugo Bousquet
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - John Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Yosuke Senju
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Meng-Chen Tsai
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Montpellier, France
| | - Stephanie Miserey-Lenkei
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Pekka Lappalainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emmanuel Lemichez
- Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Evelyne Coudrier
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Fang C, Hui TH, Wei X, Shao X, Lin Y. A combined experimental and theoretical investigation on cellular blebbing. Sci Rep 2017; 7:16666. [PMID: 29192221 PMCID: PMC5709380 DOI: 10.1038/s41598-017-16825-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
Although accumulating evidence has demonstrated the important role of membrane blebbing in various cellular processes, the fundamental question of how the initiation/evolution of blebs are influenced by physical factors like membrane-cortex interactions and intracellular pressure remains unclear. Here, we report a combined modeling and experimental study to address this outstanding issue. Specifically, boundary integral method was used to track the motion of membrane (in 3D) during blebbing while possible rupture of the bilayer-cortex adhesion has also been taken into account. We showed that, for a given differential pressure across the cell membrane, the size of the weakened cortex must be over a critical value for blebbing to occur and the steady-state volume of a bleb is proportional to its initial growth rate, all in good agreement with recent experiments. The predicted shape evolution of blebs also matches well with our observations. Finally, a blebbing map, summarizing the essential physics involved, was obtained which exhibits three distinct regimes: no bleb formation corresponding to a low intracellular pressure or a small weakened cortex region; bleb formed with a fixed width when the disrupted cortex zone is very large; and a growing bleb resulted from progressive membrane-cortex detachment under intermediate weakened cortex size.
Collapse
Affiliation(s)
- Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - T H Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Wei
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - X Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China. .,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Yuan X, Yao PY, Jiang J, Zhang Y, Su Z, Yao W, Wang X, Gui P, Mullen M, Henry C, Ward T, Wang W, Brako L, Tian R, Zhao X, Wang F, Cao X, Wang D, Liu X, Ding X, Yao X. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion. J Biol Chem 2017; 292:16174-16187. [PMID: 28808054 DOI: 10.1074/jbc.m117.808212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr545 by mass spectrometric analyses. Importantly, phosphorylation of Thr545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr545 enables ACAP4 to interact with ezrin. Given the location of Thr545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells.
Collapse
Affiliation(s)
- Xiao Yuan
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Phil Y Yao
- the Beijing University of Chinese Medicine, Beijing 100029, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Jiying Jiang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Yin Zhang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeqi Su
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wendy Yao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xueying Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gui
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - McKay Mullen
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Calmour Henry
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Tarsha Ward
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Wenwen Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Larry Brako
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ruijun Tian
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuannv Zhao
- the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fengsong Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Xinwang Cao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Dongmei Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xia Ding
- the Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Xuebiao Yao
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
9
|
Woolley TE, Gaffney EA, Goriely A. Random blebbing motion: A simple model linking cell structural properties to migration characteristics. Phys Rev E 2017; 96:012409. [PMID: 29347096 DOI: 10.1103/physreve.96.012409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 11/07/2022]
Abstract
If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.
Collapse
Affiliation(s)
- Thomas E Woolley
- Cardiff School of Mathematics Cardiff University Senghennydd Road, Cardiff, CF24 4AG, United Kingdom
| | - Eamonn A Gaffney
- University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| | - Alain Goriely
- University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| |
Collapse
|
10
|
Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin. Biochem J 2016; 473:2763-82. [DOI: 10.1042/bcj20160541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Ezrin is a member of the ERM (ezrin–radixin–moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.
Collapse
|
11
|
Wijeratne SS, Martinez JR, Grindel BJ, Frey EW, Li J, Wang L, Farach-Carson MC, Kiang CH. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix. Matrix Biol 2015; 50:27-38. [PMID: 26546708 DOI: 10.1016/j.matbio.2015.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022]
Abstract
Perlecan/HSPG2, a large, monomeric heparan sulfate proteoglycan (HSPG), is a key component of the lacunar canalicular system (LCS) of cortical bone, where it is part of the mechanosensing pericellular matrix (PCM) surrounding the osteocytic processes and serves as a tethering element that connects the osteocyte cell body to the bone matrix. Within the pericellular space surrounding the osteocyte cell body, perlecan can experience physiological fluid flow drag force and in that capacity function as a sensor to relay external stimuli to the osteocyte cell membrane. We previously showed that a reduction in perlecan secretion alters the PCM fiber composition and interferes with bone's response to a mechanical loading in vivo. To test our hypothesis that perlecan core protein can sustain tensile forces without unfolding under physiological loading conditions, atomic force microscopy (AFM) was used to capture images of perlecan monomers at nanoscale resolution and to perform single molecule force measurement (SMFMs). We found that the core protein of purified full-length human perlecan is of suitable size to span the pericellular space of the LCS, with a measured end-to-end length of 170±20 nm and a diameter of 2-4 nm. Force pulling revealed a strong protein core that can withstand over 100 pN of tension well over the drag forces that are estimated to be exerted on the individual osteocyte tethers. Data fitting with an extensible worm-like chain model showed that the perlecan protein core has a mean elastic constant of 890 pN and a corresponding Young's modulus of 71 MPa. We conclude that perlecan has physical properties that would allow it to act as a strong but elastic tether in the LCS.
Collapse
Affiliation(s)
- Sithara S Wijeratne
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | | | - Brian J Grindel
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Eric W Frey
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Jingqiang Li
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| | - Ching-Hwa Kiang
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
12
|
Jiang H, Wang W, Zhang Y, Yao WW, Jiang J, Qin B, Yao WY, Liu F, Wu H, Ward TL, Chen CW, Liu L, Ding X, Liu X, Yao X. Cell Polarity Kinase MST4 Cooperates with cAMP-dependent Kinase to Orchestrate Histamine-stimulated Acid Secretion in Gastric Parietal Cells. J Biol Chem 2015; 290:28272-28285. [PMID: 26405038 DOI: 10.1074/jbc.m115.668855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/13/2023] Open
Abstract
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.
Collapse
Affiliation(s)
- Hao Jiang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Yin Zhang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China
| | - William W Yao
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Jiying Jiang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Bo Qin
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Wendy Y Yao
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Fusheng Liu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China; Airforce General Hospital, Beijing 100036, China
| | - Huihui Wu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Tarsha L Ward
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Chun Wei Chen
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Lifang Liu
- Airforce General Hospital, Beijing 100036, China
| | - Xia Ding
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xing Liu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310.
| | - Xuebiao Yao
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,.
| |
Collapse
|
13
|
Woolley TE, Gaffney EA, Goriely A. Membrane shrinkage and cortex remodelling are predicted to work in harmony to retract blebs. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150184. [PMID: 26587278 PMCID: PMC4632591 DOI: 10.1098/rsos.150184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
Numerous cell types undergo an oscillatory form of dynamics known as blebbing, whereby pressure-driven spherical protrusions of membrane (known as blebs) expand and contract over the cell's surface. Depending on the cell line, blebs play important roles in many different phenomena including mitosis and locomotion. The expansion phase of cellular blebbing has been mathematically modelled in detail. However, the active processes occurring during the retraction phase are not so well characterized. It is thought that blebs retract because a cortex reforms inside, and adheres to, the bleb membrane. This cortex is retracted into the cell and the attached bleb membrane follows. Using a computational model of a cell's membrane, cortex and interconnecting adhesions, we demonstrate that cortex retraction alone cannot account for bleb retraction and suggest that the mechanism works in tandem with membrane shrinking. Further, an emergent hysteresis loop is observed in the intracellular pressure, which suggests a potential mechanism through which a secondary bleb can be initiated as a primary bleb contracts.
Collapse
Affiliation(s)
- Thomas E. Woolley
- University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | | | | |
Collapse
|
14
|
Global contraction or local growth, bleb shape depends on more than just cell structure. J Theor Biol 2015; 380:83-97. [PMID: 25934350 DOI: 10.1016/j.jtbi.2015.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/20/2015] [Accepted: 04/18/2015] [Indexed: 12/20/2022]
Abstract
When the plasma membrane of a cell locally delaminates from its actin cortex the membrane is pushed outwards due to the cell׳s internal fluid pressure. The resulting spherical protrusion is known as a bleb. A cell׳s ability to function correctly is highly dependent on the production of such protrusions with the correct size and shape. Here, we investigate the nucleation of large blebs from small, local neck regions. A mathematical model of a cell׳s membrane, cortex and interconnecting adhesions demonstrates that these three components are unable to capture experimentally observed bleb shapes without the addition of further assumptions. We have identified that combinations of global cortex contraction and localised membrane growth are the most promising methods for generating prototypical blebs. Currently, neither proposed mechanism has been fully tested experimentally and, thus, we propose experiments that will distinguish between the two methods of bleb production.
Collapse
|
15
|
Yu H, Zhou J, Takahashi H, Yao W, Suzuki Y, Yuan X, Yoshimura SH, Zhang Y, Liu Y, Emmett N, Bond V, Wang D, Ding X, Takeyasu K, Yao X. Spatial control of proton pump H,K-ATPase docking at the apical membrane by phosphorylation-coupled ezrin-syntaxin 3 interaction. J Biol Chem 2014; 289:33333-42. [PMID: 25301939 PMCID: PMC4246090 DOI: 10.1074/jbc.m114.581280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/08/2014] [Indexed: 11/06/2022] Open
Abstract
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of a cAMP-dependent protein kinase (PKA) cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which ezrin operates in gastric acid secretion. Here we show that phosphorylation of Ser-66 induces a conformational change of ezrin that enables its association with syntaxin 3 (Stx3) and provides a spatial cue for H,K-ATPase trafficking. This conformation-dependent association is specific for Stx3, and the binding interface is mapped to the N-terminal region. Biochemical analyses show that inhibition of ezrin phosphorylation at Ser-66 prevents ezrin-Stx3 association and insertion of H,K-ATPase into the apical plasma membrane of parietal cells. Using atomic force microscopic analyses, our study revealed that phosphorylation of Ser-66 induces unfolding of ezrin molecule to allow Stx3 binding to its N terminus. Given the essential role of Stx3 in polarized secretion, our study presents the first evidence in which phosphorylation-induced conformational rearrangement of the ezrin molecule provides a spatial cue for polarized membrane trafficking in epithelial cells.
Collapse
Affiliation(s)
- Huijuan Yu
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Jiajia Zhou
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Hirohide Takahashi
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - William Yao
- Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Yuki Suzuki
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Xiao Yuan
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Shige H Yoshimura
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yin Zhang
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027, Graduate School, Beijing University of Chinese Medicine, Beijing 100086, China
| | - Ya Liu
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | | | - Vincent Bond
- Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Dongmei Wang
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Xia Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing 100086, China
| | - Kunio Takeyasu
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan,
| | - Xuebiao Yao
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027,
| |
Collapse
|
16
|
Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:181-201. [PMID: 24924175 DOI: 10.1007/978-3-319-04843-7_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cause of death for the vast majority of cancer patients is the development of metastases at sites distant from that of the primary tumor. For most pediatric sarcoma patients such as those with osteosarcoma (OS), despite successful management of the primary tumor through multimodality approaches, the development of metastases, commonly to the lungs, is the cause of death. Significant improvements in long-term outcome for these patients have not been seen in more than 30 years. Furthermore, the long-term outcome for patients who present with metastatic disease is grave [1-5]. New treatment options are needed.Opportunities to improve outcomes for patients who present with metastases and those at-risk for progression and metastasis require an improved understanding of cancer progression and metastasis. With this goal in mind we and others have identified ezrin as a metastasis-associated protein that associated with OS and other cancers. Ezrin is the prototypical ERM (Ezrin/Radixin/Moesin) protein family member. ERMs function as linker proteins connecting the actin cytoskeleton and the plasma membrane. Since our initial identification of ezrin in pediatric sarcoma, an increasing understanding the role of ezrin in metastasis has emerged. Briefly, ezrin appears to allow metastatic cells to overcome a number of stresses experienced during the metastatic cascade, most notably the stress experienced as cells interact with the microenvironment of the secondary site. Cells must rapidly adapt to this environment in order to survive. Evidence now suggests a connection between ezrin expression and a variety of mechanisms linked to this important cellular adaptation including the ability of metastatic cells to initiate the translation of new proteins and to allow the efficient generation of ATP through a variety of sources. This understanding of the role of ezrin in the biology of metastasis is now sufficient to consider ezrin as an important therapeutic target in osteosarcoma patients. This chapter reviews our understanding of ezrin and the related ERM proteins in normal tissues and physiology, summarizes the expression of ezrin in human cancers and associations with clinical parameters of disease progression, reviews reports that detail a biological understanding of ezrin's role in metastatic progression, and concludes with a rationale that may be considered to target ezrin and ezrin biology in osteosarcoma.
Collapse
Affiliation(s)
- Ling Ren
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Rm 2144, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
17
|
Abstract
Our understanding of the FERM (4.1/ezrin/radixin/moesin) protein family has been rapidly expanding in the last few years, with the result that many new physiological functions have been ascribed to these biochemically unique proteins. In the present review, we will discuss a number of new FRMD (FERM domain)-containing proteins that were initially discovered from genome sequencing but are now being established through biochemical and genetic studies to be involved both in normal cellular processes, but are also associated with a variety of human diseases.
Collapse
|
18
|
Irie-Maezono R, Tsuyama S. Immunohistochemical Analysis of the Acid Secretion Potency in Gastric Parietal Cells. Cell 2013. [DOI: 10.4236/cellbio.2013.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T, Xiang H, Gao F, Yu X, Liao J, Ward T, Xia P, Emenari C, Ding X, Thompson W, Ma K, Zhu J, Aikhionbare F, Dou K, Cheng SY, Yao X. Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 2011; 71:1721-9. [PMID: 21363921 DOI: 10.1158/0008-5472.can-09-4683] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During progression of hepatocellular carcinoma, multiple genetic and epigenetic alterations act to posttranslationally modulate the function of proteins that promote cancer invasion and metastasis. To define such abnormalities that contribute to liver cancer metastasis, we carried out a proteomic comparison of primary hepatocellular carcinoma and samples of intravascular thrombi from the same patient. Mass spectrometric analyses of the liver cancer samples revealed a series of acidic phospho-isotypes associated with the intravascular thrombi samples. In particular, we found that Thr567 hyperphosphorylation of the cytoskeletal protein ezrin was tightly correlated to an invasive phenotype of clinical hepatocellular carcinomas and to poor outcomes in tumor xenograft assays. Using phospho-mimicking mutants, we showed that ezrin phosphorylation at Thr567 promoted in vitro invasion by hepatocarcinoma cells. Phospho-mimicking mutant ezrinT567D, but not the nonphosphorylatable mutant ezrinT567A, stimulated formation of membrane ruffles, suggesting that Thr567 phosphorylation promotes cytoskeletal-membrane remodeling. Importantly, inhibition of Rho kinase, either by Y27632 or RNA interference, resulted in inhibition of Thr567 phosphorylation and a blockade to cell invasion, implicating Rho kinase-ezrin signaling in hepatocellular carcinoma cell invasion. Our findings suggest a strategy to reduce liver tumor metastasis by blocking Rho kinase-mediated phosphorylation of ezrin.
Collapse
Affiliation(s)
- Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ding X, Deng H, Wang D, Zhou J, Huang Y, Zhao X, Yu X, Wang M, Wang F, Ward T, Aikhionbare F, Yao X. Phospho-regulated ACAP4-Ezrin interaction is essential for histamine-stimulated parietal cell secretion. J Biol Chem 2010; 285:18769-80. [PMID: 20360010 DOI: 10.1074/jbc.m110.129007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ezrin-radixin-moesin proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to the regulated HCl secretion. Our recent proteomic study revealed a protein complex of ezrin-ACAP4-ARF6 essential for volatile membrane remodeling (Fang, Z., Miao, Y., Ding, X., Deng, H., Liu, S., Wang, F., Zhou, R., Watson, C., Fu, C., Hu, Q., Lillard, J. W., Jr., Powell, M., Chen, Y., Forte, J. G., and Yao, X. (2006) Mol. Cell Proteomics 5, 1437-1449). However, knowledge of whether ACAP4 physically interacts with ezrin and how their interaction is integrated into membrane-cytoskeletal remodeling has remained elusive. Here we provide the first evidence that ezrin interacts with ACAP4 in a protein kinase A-mediated phosphorylation-dependent manner through the N-terminal 400 amino acids of ACAP4. ACAP4 locates in the cytoplasmic membrane in resting parietal cells but translocates to the apical plasma membrane upon histamine stimulation. ACAP4 was precipitated with ezrin from secreting but not resting parietal cell lysates, suggesting a phospho-regulated interaction. Indeed, this interaction is abolished by phosphatase treatment and validated by an in vitro reconstitution assay using phospho-mimicking ezrin(S66D). Importantly, ezrin specifies the apical distribution of ACAP4 in secreting parietal cells because either suppression of ezrin or overexpression of non-phosphorylatable ezrin prevents the apical localization of ACAP4. In addition, overexpressing GTPase-activating protein-deficient ACAP4 results in an inhibition of apical membrane-cytoskeletal remodeling and gastric acid secretion. Taken together, these results define a novel molecular mechanism linking ACAP4-ezrin interaction to polarized epithelial secretion.
Collapse
Affiliation(s)
- Xia Ding
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res 2009; 19:1350-62. [PMID: 19786985 DOI: 10.1038/cr.2009.114] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic lymphocytes are key players in the orchestration of immune response and elimination of defective cells. We have previously reported that natural killer (NK) cells enter target tumor cells, leading to either target cell death or self-destruction within tumor cells. However, it has remained elusive as to the fate of NK cells after internalization and whether the heterotypic cell-in-cell process is different from that of the homotypic cell-in-cell event recently named entosis. Here, we show that NK cells undergo a cell-in-cell process with the ultimate fate of apoptosis within tumor cells and reveal that the internalization process requires the actin cytoskeletal regulator, ezrin. To visualize how NK cells enter into tumor cells, we carried out real-time dual color imaging analyses of NK cell internalization into tumor cells. Surprisingly, most NK cells commit to programmed cell death after their entry into tumor cells, which is distinctively different from entosis observed in the homotypic cell-in-cell process. The apoptotic cell death of the internalized NK cells was evident by activation of caspase 3 and DNA fragmentation. Furthermore, NK cell death after internalization is attenuated by the caspase inhibitor, Z-VAD-FMK, confirming apoptosis as the mode of NK cell death within tumor cells. To determine protein factors essential for the entry of NK cells into tumor cells, we carried out siRNA-based knockdown analysis and discovered a critical role of ezrin in NK cell internalization. Importantly, PKA-mediated phosphorylation of ezrin promotes the NK cell internalization process. Our findings suggest a novel regulatory mechanism by which ezrin governs NK cell internalization into tumor cells.
Collapse
|
22
|
|