1
|
Tian C, Wang Q, Gao T, Sun H, Li J, He Y. Effects of Low-Salinity Stress on Histology and Metabolomics in the Intestine of Fenneropenaeus chinensis. Animals (Basel) 2024; 14:1880. [PMID: 38997992 PMCID: PMC11240639 DOI: 10.3390/ani14131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolomics has been used extensively to identify crucial molecules and biochemical effects induced by environmental factors. To understand the effects of acute low-salinity stress on Fenneropenaeus chinensis, intestinal histological examination and untargeted metabonomic analysis of F. chinensis were performed after exposure to a salinity of 15 ppt for 3, 7, and 14 d. The histological examination revealed that acute stress resulted in most epithelial cells rupturing, leading to the dispersion of nuclei in the intestinal lumen after 14 days. Metabolomics analysis identified numerous differentially expressed metabolites (DEMs) at different time points after exposure to low-salinity stress, in which some DEMs were steadily downregulated at the early stage of stress and then gradually upregulated. We further screened 14 overlapping DEMs, in which other DEMs decreased significantly during low-salinity stress, apart from L-palmitoylcarnitine and vitamin A, with enrichments in phenylalanine, tyrosine and tryptophan biosynthesis, fatty acid and retinol metabolism, and ABC transporters. ABC transporters exhibit significant abnormalities and play a vital role in low-salinity stress. This study provides valuable insights into the molecular mechanisms underlying the responses of F. chinensis to acute salinity stress.
Collapse
Affiliation(s)
- Caijuan Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiong Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tian Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huarui Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yuying He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Turnbull PC, Hughes MC, Perry CGR. The fatty acid derivative palmitoylcarnitine abrogates colorectal cancer cell survival by depleting glutathione. Am J Physiol Cell Physiol 2019; 317:C1278-C1288. [PMID: 31483701 DOI: 10.1152/ajpcell.00319.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Previous evidence suggests that palmitoylcarnitine incubations trigger mitochondrial-mediated apoptosis in HT29 colorectal adenocarcinoma cells, yet nontransformed cells appear insensitive. The mechanism by which palmitoylcarnitine induces cancer cell death is unclear. The purpose of this investigation was to examine the relationship between mitochondrial kinetics and glutathione buffering in determining the effect of palmitoylcarnitine on cell survival. HT29 and HCT 116 colorectal adenocarcinoma cells, CCD 841 nontransformed colon cells, and MCF7 breast adenocarcinoma cells were exposed to 0 μM, 50 μM, and 100 μM palmitoylcarnitine for 24-48 h. HCT 116 and HT29 cells showed decreased cell survival following palmitoylcarnitine compared with CCD 841 cells. Palmitoylcarnitine stimulated H2O2 emission in HT29 and CCD 841 cells but increased it to a greater level in HT29 cells due largely to a higher basal H2O2 emission. This greater H2O2 emission was associated with lower glutathione buffering capacity and caspase-3 activation in HT29 cells. The glutathione-depleting agent buthionine sulfoximine sensitized CCD 841 cells and further sensitized HT29 cells to palmitoylcarnitine-induced decreases in cell survival. MCF7 cells did not produce H2O2 when exposed to palmitoylcarnitine and were able to maintain glutathione levels. Furthermore, HT29 cells demonstrated the lowest mitochondrial oxidative kinetics vs. CCD 841 and MCF7 cells. The results demonstrate that colorectal cancer is sensitive to palmitoylcarnitine due in part to an inability to prevent oxidative stress through glutathione-redox coupling, thereby rendering the cells sensitive to elevations in H2O2. These findings suggest that the relationship between inherent metabolic capacities and redox regulation is altered early in response to palmitoylcarnitine.
Collapse
Affiliation(s)
- Patrick C Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Cao B, Jin M, Brietzke E, McIntyre RS, Wang D, Rosenblat JD, Ragguett RM, Zhang C, Sun X, Rong C, Wang J. Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry Clin Neurosci 2019; 73:100-108. [PMID: 30156046 DOI: 10.1111/pcn.12779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
AIM We sought to compare alterations in serum bioenergetic markers within a well-characterized sample of adults with schizophrenia at baseline and after 8 weeks of pharmacological treatment with the hypothesis that treatment would be associated with significant changes in bioenergetic markers given the role of bioenergetic dysfunction in schizophrenia. METHODS We recruited adults with schizophrenia (n = 122) who had not received pharmacological treatment for at least 1 month prior to enrollment, including drug-naïve (i.e., first-episode) participants and treatment non-adherent participants. Pre- and post-treatment serum samples were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS Metabolites with the greatest change, when comparing pre- and post-treatment levels, were identified revealing 14 water-soluble metabolites of interest. The composition of these metabolites was: amino acids (n = 6), carnitines (n = 4), polar lipids (n = 3), and organic acid (n = 1). All amino acids and lysophosphatidylcholines (LysoPC) were increased, while the four carnitines - oleoylcarnitine, L-palmitoylcarnitine, linoleyl carnitine, and L-acetylcarnitine - were decreased post-treatment. Of these metabolite biomarkers, six - oleoylcarnitine, linoleyl carnitine, L-acetylcarnitine, LysoPC(15:0), D-glutamic acid, and L-arginine - were identified as having most consistently and predictably changed after 8 weeks of treatment. CONCLUSION The current study identified several bioenergetic markers that consistently change with pharmacological treatment. These bioenergetic changes may provide further insights into the pathophysiology of schizophrenia along with furthering our understanding of the mechanisms subserving both the effects (e.g., antipsychotic effects) and side-effects (e.g., metabolic syndrome) of antipsychotics.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Min Jin
- School of Public Health, Baotou Medical College, Baotou, China
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada.,The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Dongfang Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | | | - Xiaoyu Sun
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
4
|
Jacques F, Rippa S, Perrin Y. Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:432-440. [PMID: 30080631 DOI: 10.1016/j.plantsci.2018.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 05/24/2023]
Abstract
L-carnitine is present in all living kingdoms where it acts in diverse physiological processes. It is involved in lipid metabolism in animals and yeasts, notably as an essential cofactor of fatty acid intracellular trafficking. Its physiological significance is poorly understood in plants, but L-carnitine may be linked to fatty acid metabolism among other roles. Indeed, carnitine transferases activities and acylcarnitines are measured in plant tissues. Current knowledge of fatty acid trafficking in plants rules out acylcarnitines as intermediates of the peroxisomal and mitochondrial fatty acid metabolism, unlike in animals and yeasts. Instead, acylcarnitines could be involved in plastidial exportation of de novo fatty acid, or importation of fatty acids into the ER, for synthesis of specific glycerolipids. L-carnitine also contributes to cellular maintenance though antioxidant and osmolyte properties in animals and microbes. Recent data indicate similar features in plants, together with modulation of signaling pathways. The biosynthesis of L-carnitine in the plant cell shares similar precursors as in the animal and yeast cells. The elucidation of the biosynthesis pathway of L-carnitine, and the identification of the enzymes involved, is today essential to progress further in the comprehension of its biological significance in plants.
Collapse
Affiliation(s)
- Florian Jacques
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Sonia Rippa
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| | - Yolande Perrin
- Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025 Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS, 60319, 60203, Compiègne Cedex, France.
| |
Collapse
|
5
|
Soni MS, Rabaglia ME, Bhatnagar S, Shang J, Ilkayeva O, Mynatt R, Zhou YP, Schadt EE, Thornberry NA, Muoio DM, Keller MP, Attie AD. Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes 2014; 63:3805-14. [PMID: 24969106 PMCID: PMC4207388 DOI: 10.2337/db13-1677] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously demonstrated that micro-RNAs (miRNAs) 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of miRNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including nonfuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT; Slc25a20) is a direct target of these miRNAs. CACT is responsible for transporting long-chain acyl-carnitines into the mitochondria for β-oxidation. Small interfering RNA-mediated knockdown of CACT in β-cells led to the accumulation of fatty acyl-carnitines and enhanced IS. The addition of long-chain fatty acyl-carnitines promoted IS from rat insulinoma β-cells (INS-1) as well as primary mouse islets. The effect on INS-1 cells was augmented in response to suppression of CACT. A nonhydrolyzable ether analog of palmitoyl-carnitine stimulated IS, showing that β-oxidation of palmitoyl-carnitine is not required for its stimulation of IS. These studies establish a link between miRNA-dependent regulation of CACT and fatty acyl-carnitine-mediated regulation of IS.
Collapse
Affiliation(s)
- Mufaddal S Soni
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | | | - Jin Shang
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC
| | - Randall Mynatt
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Yun-Ping Zhou
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Eric E Schadt
- Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY
| | - Nancy A Thornberry
- Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, NJ
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC Departments of Medicine and Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| |
Collapse
|
6
|
Tułodziecka K, Czeredys M, Nałęcz KA. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells. Neurochem Res 2012; 38:519-29. [PMID: 23224819 DOI: 10.1007/s11064-012-0944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
Palmitoylcarnitine was observed previously to promote differentiation of neuroblastoma NB-2a cells, and to affect protein kinase C (PKC). Palmitoylcarnitine was also observed to increase palmitoylation of several proteins, including a PKC substrate, whose expression augments during differentiation of neural cells-a growth associated protein GAP-43, known to bind phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. Since palmitoylated proteins are preferentially localized in sphingolipid- and cholesterol-rich microdomains of plasma membrane, the present study has been focused on a possible effect of palmitoylcarnitine on GAP-43 localization in these microdomains. Palmitoylcarnitine treatment resulted in GAP-43 appearance in floating fractions (rafts) in sucrose gradient and increased co-localization with cholesterol and with PI(4,5)P(2), although co-localization of both lipids decreased. GAP-43 disappeared from raft fraction upon treatment with 2-bromopalmitate (an inhibitor of palmitoylating enzymes) and after treatment with etomoxir (carnitine palmitoyltransferase I inhibitor). Raft localization of GAP-43 was completely abolished by treatment with methyl-β-cyclodextrin, a cholesterol binding agent, while there was no change upon sequestration of PI(4,5)P(2) with neomycin. GAP-43 co-precipitated with a monomeric form of Gα(o), a phenomenon diminished after palmitoylcarnitine treatment and paralleled by a decrease of Gα(o) in the raft fraction. These observations point to palmitoylation of GAP-43 as a mechanism leading to an increased localization of this protein in microdomains of plasma membrane rich in cholesterol, in majority different, however, from microdomains in which PI(4,5)P(2) is present. This localization correlates with decreased interaction with Gα(o) and suppression of its activity-an important step regulating neural cell differentiation.
Collapse
Affiliation(s)
- Karolina Tułodziecka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
7
|
Johnson ES, Kornbluth S. Life, death, and the metabolically controlled protein acetylome. Curr Opin Cell Biol 2012; 24:876-80. [PMID: 23103123 DOI: 10.1016/j.ceb.2012.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022]
Abstract
The complex signaling pathways that control cellular fate can be intimately influenced by metabolic status. Although the ability of nutrients to influence intracellular decisions has been appreciated for some time, the complex signaling mechanisms linking metabolic inputs to cell proliferation and death are not fully understood. An emerging theme in the literature is that intracellular metabolite levels can directly influence cell fate decisions through modulation of nutrient-derived protein modifications. It appears that varying the level of intracellular metabolites can alter the abundance of post-translational modifications, both by altering the availability of donor substrates and changing the activity of the nutrient-sensitive enzymes regulating these reactions. We focus here on protein acetylation, a modification that can modulate both cell proliferation and cell death in response to changes in extracellular nutrient supply.
Collapse
Affiliation(s)
- Erika Segear Johnson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
8
|
High Affinity Carnitine Transporters from OCTN Family in Neural Cells. Neurochem Res 2010; 35:743-8. [DOI: 10.1007/s11064-010-0131-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2010] [Indexed: 12/30/2022]
|
9
|
Burlikowska K, Szymeczko R. Ileal digestibility of fat and fatty acids in polar foxes ( Alopex lagopusL.) fed diets used during the reproductive period. ACTA AGR SCAND A-AN 2007. [DOI: 10.1080/09064700701801200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|