1
|
Ruibal C, Castro A, Fleitas AL, Quezada J, Quero G, Vidal S. A Chloroplast COR413 Protein From Physcomitrella patens Is Required for Growth Regulation Under High Light and ABA Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:845. [PMID: 32636864 PMCID: PMC7317016 DOI: 10.3389/fpls.2020.00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
COR413 genes belong to a poorly characterized group of plant-specific cold-regulated genes initially identified as part of the transcriptional activation machinery of plants during cold acclimation. They encode multispanning transmembrane proteins predicted to target the plasma membrane or the chloroplast inner membrane. Despite being ubiquitous throughout the plant kingdom, little is known about their biological function. In this study, we used reverse genetics to investigate the relevance of a predicted chloroplast localized COR413 protein (PpCOR413im) from the moss Physcomitrella patens in developmental and abiotic stress responses. Expression of PpCOR413im was strongly induced by abscisic acid (ABA) and by various environmental stimuli, including low temperature, hyperosmosis, salinity and high light. In vivo subcellular localization of PpCOR413im-GFP fusion protein revealed that this protein is localized in chloroplasts, confirming the in silico predictions. Loss-of-function mutants of PpCOR413im exhibited growth and developmental alterations such as growth retardation, reduced caulonema formation and hypersensitivity to ABA. Mutants also displayed altered photochemistry under various abiotic stresses, including dehydration and low temperature, and exhibited a dramatic growth inhibition upon exposure to high light. Disruption of PpCOR413im also caused altered chloroplast ultrastructure, increased ROS accumulation, and enhanced starch and sucrose levels under high light or after ABA treatment. In addition, loss of PpCOR413im affected both nuclear and chloroplast gene expression in response to ABA and high light, suggesting a role for this gene downstream of ABA in the regulation of growth and environmental stress responses. Developmental alterations exhibited by PpCOR413im knockout mutants had remarkable similarities to those exhibited by hxk1, a mutant lacking a major chloroplastic hexokinase, an enzyme involved in energy homeostasis. Based on these findings, we propose that PpCOR413im is involved in coordinating energy metabolism with ABA-mediated growth and developmental responses.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jorge Quezada
- Unidad de Biotecnología Vegetal, Instituto de Biología Molecular y Biotecnología, Carrera de Biología – Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Gastón Quero
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Nozoe M, Tsunoyama Y, Ishizaki Y, Nakahira Y, Shiina T. Selective Activation of Chloroplast psbD Light-Responsive Promoter and psaA/B Promoter in Transplastomic Tobacco Plants Overexpressing Arabidopsis Sigma Factor AtSIG5. Protein Pept Lett 2020; 27:168-175. [PMID: 31612816 DOI: 10.2174/0929866526666191014130605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/30/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastid-encoded eubacterial-type RNA polymerase (PEP) plays a critical role in the transcription of photosynthesis genes in chloroplasts. Notably, some of the reaction center genes, including psaA, psaB, psbA, and psbD genes, are differentially transcribed by PEP in mature chloroplasts. However, the molecular mechanism of promoter selection in the reaction center gene transcription by PEP is not well understood. OBJECTIVE Sigma factor proteins direct promoter selection by a core PEP in chloroplasts as well as bacteria. AtSIG5 is a unique chloroplast sigma factor essential for psbD light-responsive promoter (psbD LRP) activity. To analyze the role of AtSIG5 in chloroplast transcription in more detail, we assessed the effect of AtSIG5 hyper-expression on the transcription of plastid-encoded genes in chloroplast transgenic plants. RESULTS The chloroplast transgenic tobacco (CpOX-AtSIG5) accumulates AtSIG5 protein at extremely high levels in chloroplasts. Due to the extremely high-level expression of recombinant AtSIG5, most PEP holoenzymes are most likely to include the recombinant AtSIG5 in the CpOXAtSIG5 chloroplasts. Thus, we can assess the promoter preference of AtSIG5 in vivo. The overexpression of AtSIG5 significantly increased the expression of psbD LRP transcripts encoding PSII reaction center D2 protein and psaA/B operon transcripts encoding PSI core proteins. Furthermore, run-on transcription analyses revealed that AtSIG5 preferentially recognizes the psaA/B promoter, as well as the psbD LRP. Moreover, we found that psbD LRP is constitutively active in CpOX-AtSIG5 plants irrespective of light and dark. CONCLUSION AtSIG5 probably plays a significant role in differential transcription of reaction center genes in mature chloroplasts.
Collapse
Affiliation(s)
- Mikio Nozoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yuichi Tsunoyama
- Radioisotope Research Center, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502,Japan
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
- College of Agriculture, Ibaraki University, Ami, Inashiki 300-0393, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| |
Collapse
|
3
|
Belbin FE, Noordally ZB, Wetherill SJ, Atkins KA, Franklin KA, Dodd AN. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor. THE NEW PHYTOLOGIST 2017; 213:727-738. [PMID: 27716936 PMCID: PMC5215360 DOI: 10.1111/nph.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/28/2016] [Indexed: 05/19/2023]
Abstract
We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.
Collapse
Affiliation(s)
- Fiona E. Belbin
- School of Biological SciencesUniversity of BristolBristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | - Zeenat B. Noordally
- Department of Botany and Plant BiologyUniversity of GenevaGenevaCH‐1211Switzerland
| | | | - Kelly A. Atkins
- School of Biological SciencesUniversity of BristolBristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | - Keara A. Franklin
- School of Biological SciencesUniversity of BristolBristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | - Antony N. Dodd
- School of Biological SciencesUniversity of BristolBristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
4
|
Shimmura S, Nozoe M, Kitora S, Kin S, Matsutani S, Ishizaki Y, Nakahira Y, Shiina T. Comparative Analysis of Chloroplast psbD Promoters in Terrestrial Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1186. [PMID: 28751898 PMCID: PMC5508017 DOI: 10.3389/fpls.2017.01186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 05/15/2023]
Abstract
The transcription of photosynthesis genes encoded by the plastid genome is mainly mediated by a prokaryotic-type RNA polymerase called plastid-encoded plastid RNA polymerase (PEP). Standard PEP-dependent promoters resemble bacterial sigma-70-type promoters containing the so-called -10 and -35 elements. On the other hand, an unusual light- and stress-responsive promoter (psbD LRP) that is regulated by a 19-bp AAG-box immediately upstream of the -35 element has been mapped upstream of the psbD-psbC operon in some angiosperms. However, the occurrence of the AAG-box containing psbD LRP in plant evolution remains elusive. We have mapped the psbD promoters in eleven embryophytes at different evolutionary stages from liverworts to angiosperms. The psbD promoters were mostly mapped around 500-900 bp upstream of the psbD translational start sites, indicating that the psbD mRNAs have unusually long 5'-UTR extensions in common. The -10 elements of the psbD promoter are well-conserved in all embryophytes, but not the -35 elements. We found that the AAG-box sequences are highly conserved in angiosperms and gymnosperms except for gnetaceae plants. Furthermore, partial AAG-box-like sequences have been identified in the psbD promoters of some basal embryophytes such as moss, hornwort, and lycophyte, whereas liverwort has the standard PEP promoter without the AAG-box. These results suggest that the AAG-box sequences of the psbD LRP may have evolved from a primitive type of AAG-box of basal embryophytes. On the other hand, monilophytes (ferns) use another type of psbD promoter composed of a distinct cis-element upstream of the potential -35 element. Furthermore, we found that psbD expression is not regulated by light in gymnosperms or basal angiosperms, although they have the well-conserved AAG-box sequences. Thus, it is unlikely that acquisition of the AAG-box containing psbD promoter is directly associated with light-induced transcription of the psbD-psbC operon. Light- and stress-induced transcription may have evolved independently and multiple times during terrestrial plant evolution.
Collapse
Affiliation(s)
- Shuichi Shimmura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Mikio Nozoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
- AMITA Institute for Sustainable Economies Co., Ltd.Kyoto, Japan
| | - Shota Kitora
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Satoko Kin
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Shigeru Matsutani
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
- Kyoto Botanical GardenKyoto, Japan
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
- College of Agriculture, Ibaraki UniversityIbaraki, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
5
|
Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S. Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2016; 11:e1116661. [PMID: 26645746 PMCID: PMC4871632 DOI: 10.1080/15592324.2015.1116661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana has long been the model plant of choice for elucidating the mechanisms of the circadian clock. Recently, relevant results have accumulated in other species of green plant lineages, including green algae. This mini-review describes a comparison of the mechanism of the A. thaliana clock to those of the green alga Chlamydomonas reinhardtii and the moss Physcomitrella patens, focusing on commonalities and divergences of subsystems of the clock. The potential of such an approach from an evolutionary viewpoint is discussed.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Yamashino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Setsuyuki Aoki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Chi W, He B, Mao J, Jiang J, Zhang L. Plastid sigma factors: Their individual functions and regulation in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:770-8. [PMID: 25596450 DOI: 10.1016/j.bbabio.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 11/18/2022]
Abstract
Sigma factors are the predominant factors involved in transcription regulation in bacteria. These factors can recruit the core RNA polymerase to promoters with specific DNA sequences and initiate gene transcription. The plastids of higher plants originating from an ancestral cyanobacterial endosymbiont also contain sigma factors that are encoded by a small family of nuclear genes. Although all plastid sigma factors contain sequences conserved in bacterial sigma factors, a considerable number of distinct traits have been acquired during evolution. The present review summarises recent advances concerning the regulation of the structure, function and activity of plastid sigma factors since their discovery nearly 40 years ago. We highlight the specialised roles and overlapping redundant functions of plastid sigma factors according to their promoter selectivity. We also focus on the mechanisms that modulate the activity of sigma factors to optimise plastid function in response to developmental cues and environmental signals. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
7
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
8
|
Atkins KA, Dodd AN. Circadian regulation of chloroplasts. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:43-50. [PMID: 25026538 DOI: 10.1016/j.pbi.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 05/08/2023]
Abstract
Circadian rhythms produce a biological measure of time that increases plant performance. The mechanisms that underlie this increase in productivity require investigation to provide information that will underpin future crop improvement. There is a growing body of evidence that a sophisticated signalling network interconnects the circadian oscillator and chloroplasts. We consider this in the context of circadian signalling to chloroplasts and the relationship between retrograde signalling and circadian regulation. We place circadian signalling to chloroplasts by sigma factors within an evolutionary context. We describe selected recent developments in the integration of light and circadian signals that control chloroplast gene expression.
Collapse
Affiliation(s)
- Kelly A Atkins
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Antony N Dodd
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK.
| |
Collapse
|
9
|
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:181-90. [PMID: 23529849 DOI: 10.1007/s11120-013-9811-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.
Collapse
Affiliation(s)
- Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK,
| | | | | | | | | |
Collapse
|
10
|
Kanazawa T, Ishizaki K, Kohchi T, Hanaoka M, Tanaka K. Characterization of Four Nuclear-Encoded Plastid RNA Polymerase Sigma Factor Genes in the Liverwort Marchantia polymorpha: Blue-Light- and Multiple Stress-Responsive SIG5 was Acquired Early in the Emergence of Terrestrial Plants. ACTA ACUST UNITED AC 2013; 54:1736-48. [DOI: 10.1093/pcp/pct119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Busch H, Boerries M, Bao J, Hanke ST, Hiss M, Tiko T, Rensing SA. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. PLoS One 2013; 8:e60494. [PMID: 23637751 PMCID: PMC3630159 DOI: 10.1371/journal.pone.0060494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/27/2013] [Indexed: 01/07/2023] Open
Abstract
Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.
Collapse
Affiliation(s)
- Hauke Busch
- ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Noordally ZB, Ishii K, Atkins KA, Wetherill SJ, Kusakina J, Walton EJ, Kato M, Azuma M, Tanaka K, Hanaoka M, Dodd AN. Circadian Control of Chloroplast Transcription by a Nuclear-Encoded Timing Signal. Science 2013; 339:1316-9. [DOI: 10.1126/science.1230397] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Kanesaki Y, Imamura S, Minoda A, Tanaka K. External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res 2012; 19:289-303. [PMID: 22518007 PMCID: PMC3372377 DOI: 10.1093/dnares/dss013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 03/14/2012] [Indexed: 01/08/2023] Open
Abstract
The mitochondria and chloroplasts in plant cells are originated from bacterial endosymbioses, and they still replicate their own genome and divide in a similar manner as their ancestors did. It is thus likely that the organelle transcription is coordinated with its proliferation cycle. However, this possibility has not extensively been explored to date, because in most plant cells there are many mitochondria and chloroplasts that proliferate asynchronously. It is generally believed that the gene transfer from the organellar to nuclear genome has enabled nuclear control of the organelle functions during the evolution of eukaryotic plant cells. Nevertheless, no significant relationship has been reported between the organelle transcriptome and the host cell cycle even in Chlamydomonas reinhardtii. While the organelle proliferation cycle is not coordinated with the cell cycle in vascular plants, in the unicellular red alga Cyanidioschyzon merolae that contains only one mitochondrion, one chloroplast, and one nucleus per cell, each of the organelles is known to proliferate at a specific phase of the cell cycle. Here, we show that the expression of most of the organelle genes is highly coordinated with the cell cycle phases as well as with light regimes in clustering analyses. In addition, a strong correlation was observed between the gene expression profiles in the mitochondrion and chloroplast, resulting in the identification of a network of functionally related genes that are co-expressed during organelle proliferation.
Collapse
Affiliation(s)
- Yu Kanesaki
- Genome Research Center, Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo156-8502, Japan
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sousuke Imamura
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo112-8551, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ayumi Minoda
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Tokyo192-0392, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kan Tanaka
- Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
14
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
15
|
Matsuo T, Ishiura M. Chlamydomonas reinhardtiias a new model system for studying the molecular basis of the circadian clock. FEBS Lett 2011; 585:1495-502. [DOI: 10.1016/j.febslet.2011.02.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/31/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
|