1
|
Fessl T, Watkins D, Oatley P, Allen WJ, Corey RA, Horne J, Baldwin SA, Radford SE, Collinson I, Tuma R. Dynamic action of the Sec machinery during initiation, protein translocation and termination. eLife 2018; 7:35112. [PMID: 29877797 PMCID: PMC6021171 DOI: 10.7554/elife.35112] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Protein translocation across cell membranes is a ubiquitous process required for protein secretion and membrane protein insertion. In bacteria, this is mostly mediated by the conserved SecYEG complex, driven through rounds of ATP hydrolysis by the cytoplasmic SecA, and the trans-membrane proton motive force. We have used single molecule techniques to explore SecY pore dynamics on multiple timescales in order to dissect the complex reaction pathway. The results show that SecA, both the signal sequence and mature components of the pre-protein, and ATP hydrolysis each have important and specific roles in channel unlocking, opening and priming for transport. After channel opening, translocation proceeds in two phases: a slow phase independent of substrate length, and a length-dependent transport phase with an intrinsic translocation rate of ~40 amino acids per second for the proOmpA substrate. Broad translocation rate distributions reflect the stochastic nature of polypeptide transport.
Collapse
Affiliation(s)
- Tomas Fessl
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Daniel Watkins
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter Oatley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Robin Adam Corey
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jim Horne
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve A Baldwin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0025. [PMID: 26370937 PMCID: PMC4632601 DOI: 10.1098/rstb.2015.0025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep 2013; 1:21-8. [PMID: 22576621 PMCID: PMC3333808 DOI: 10.1016/j.celrep.2011.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/06/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022] Open
Abstract
The Sec complex forms the core of a conserved machinery coordinating the passage of proteins across or into biological membranes. The bacterial complex SecYEG interacts with the ATPase SecA or translating ribosomes to translocate secretory and membrane proteins accordingly. A truncated preprotein competes with the physiological full-length substrate and primes the protein-channel complex for transport. We have employed electron cryomicroscopy of two-dimensional crystals to determine the structure of the complex unlocked by the preprotein. Its visualization in the native environment of the membrane preserves the active arrangement of SecYEG dimers, in which only one of the two channels is occupied by the polypeptide substrate. The signal sequence could be identified along with the corresponding conformational changes in SecY, including relocation of transmembrane segments 2b and 7 as well as the plug, which presumably then promote channel opening. Therefore, we propose that the structure describes the translocon unlocked by preprotein and poised for protein translocation.
Collapse
Affiliation(s)
- Dilem Hizlan
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
5
|
Whitehouse S, Gold VAM, Robson A, Allen WJ, Sessions RB, Collinson I. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. ACTA ACUST UNITED AC 2012; 199:919-29. [PMID: 23209305 PMCID: PMC3518217 DOI: 10.1083/jcb.201205191] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polypeptide translocation in bacteria, once underway, requires only one copy each of SecA and SecYEG and does not require the mobility of the SecA 2-helix-finger. The bacterial ATPase SecA and protein channel complex SecYEG form the core of an essential protein translocation machinery. The nature of the conformational changes induced by each stage of the hydrolytic cycle of ATP and how they are coupled to protein translocation are not well understood. The structure of the SecA–SecYEG complex revealed a 2-helix-finger (2HF) of SecA in an ideal position to contact the substrate protein and push it through the membrane. Surprisingly, immobilization of this finger at the edge of the protein channel had no effect on translocation, whereas its imposition inside the channel blocked transport. This analysis resolves the stoichiometry of the active complex, demonstrating that after the initiation process translocation requires only one copy each of SecA and SecYEG. The results also have important implications on the mechanism of energy transduction and the power stroke driving transport. Evidently, the 2HF is not a highly mobile transducing element of polypeptide translocation.
Collapse
Affiliation(s)
- Sarah Whitehouse
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Ross E. Dalbey
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Peng Wang
- The Ohio State University, Department of Chemistry, Columbus, Ohio 43210;
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
7
|
Harsman A, Krüger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R. Protein conducting nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454102. [PMID: 21339590 DOI: 10.1088/0953-8984/22/45/454102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40(SC) as well as a mutant Tom40(SC) (S(54 --> E) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40(SC) corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40(SC) S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with t(off) approximately = 1.1 ms for the wildtype, whereas the mutant Tom40(SC) S54E displayed a biphasic dwelltime distribution (t(off)(-1) approximately = 0.4 ms; t(off)(-2) approximately = 4.6 ms).
Collapse
Affiliation(s)
- Anke Harsman
- Biophysics, Department of Biology/Chemistry, University of Osnabrueck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bondar AN, del Val C, Freites JA, Tobias DJ, White SH. Dynamics of SecY translocons with translocation-defective mutations. Structure 2010; 18:847-57. [PMID: 20637421 DOI: 10.1016/j.str.2010.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/28/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The SecY/Sec61 translocon complex, located in the endoplasmic reticulum membrane of eukaryotes (Sec61) or the plasma membrane of prokaryotes (SecY), mediates the transmembrane secretion or insertion of nascent proteins. Mutations that permit the secretion of nascent proteins with defective signal sequences (Prl-phenotype), or interfere with the transmembrane orientation of newly synthesized protein segments, can affect protein topogenesis. The crystallographic structure of SecYEbeta from Methanococcus jannaschii revealed widespread distribution of mutations causing topogenesis defects, but not their molecular mechanisms. Based upon prolonged molecular dynamics simulations of wild-type M. jannaschii SecYEbeta and an extensive sequence-conservation analysis, we show that the closed state of the translocon is stabilized by hydrogen-bonding interactions of numerous highly conserved amino acids. Perturbations induced by mutation at various locations are rapidly relayed to the plug segment that seals the wild-type closed-state translocon, leading to displacement and increased hydration of the plug.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | | | |
Collapse
|
9
|
Mandon EC, Trueman SF, Gilmore R. Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 2009; 21:501-7. [PMID: 19450960 DOI: 10.1016/j.ceb.2009.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The Sec61 and SecYEG translocation channels mediate the selective transport of proteins across the endoplasmic reticulum and bacterial inner membrane, respectively. These channels are also responsible for the integration of membrane proteins. To accomplish these two critical events in protein expression, the transport channels undergo conformational changes to permit the export of lumenal domains and the integration of transmembrane spans. Novel insight into how these channels open during protein translocation has been provided by a combination of the analysis of new channel structures, biochemical characterization of translocation intermediates, molecular dynamics simulations, and in vivo and in vitro analysis of structure-based Sec61 and SecY mutants.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|