1
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
2
|
de la Peña Avalos B, Paquet N, Tropée R, Coulombe Y, Palacios H, Leung J, Masson JY, Duijf PG, Dray E. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51. Nucleic Acids Res 2024; 52:1173-1187. [PMID: 38084915 PMCID: PMC10853800 DOI: 10.1093/nar/gkad1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.
Collapse
Affiliation(s)
- Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Nicolas Paquet
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Hannah Palacios
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX 78229, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Nifontova G, Petrova I, Gerasimovich E, Konopsky VN, Ayadi N, Charlier C, Fleury F, Karaulov A, Sukhanova A, Nabiev I. Label-Free Multiplexed Microfluidic Analysis of Protein Interactions Based on Photonic Crystal Surface Mode Imaging. Int J Mol Sci 2023; 24:ijms24054347. [PMID: 36901779 PMCID: PMC10002048 DOI: 10.3390/ijms24054347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Irina Petrova
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
| | - Evgeniia Gerasimovich
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
| | | | - Nizar Ayadi
- DNA Repair Groupe, CNRS UMR 6286, US2B, Nantes Université, 44000 Nantes, France
| | - Cathy Charlier
- IMPACT Platform “Interactions Moléculaires Puces ACTivités”, UMR CNRS 6286 UFIP, Université de Nantes, 44000 Nantes, France
| | - Fabrice Fleury
- DNA Repair Groupe, CNRS UMR 6286, US2B, Nantes Université, 44000 Nantes, France
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (A.S.); (I.N.)
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Structure Fédérative de Recherche Cap Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115522 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence: (A.S.); (I.N.)
| |
Collapse
|
4
|
Woo TT, Chuang CN, Wang TF. Budding yeast Rad51: a paradigm for how phosphorylation and intrinsic structural disorder regulate homologous recombination and protein homeostasis. Curr Genet 2021; 67:389-396. [PMID: 33433732 PMCID: PMC8139929 DOI: 10.1007/s00294-020-01151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
The RecA-family recombinase Rad51 is the central player in homologous recombination (HR), the faithful pathway for repairing DNA double-strand breaks (DSBs) during both mitosis and meiosis. The behavior of Rad51 protein in vivo is fine-tuned via posttranslational modifications conducted by multiple protein kinases in response to cell cycle cues and DNA lesions. Unrepaired DSBs and ssDNA also activate Mec1ATR and Tel1ATM family kinases to initiate the DNA damage response (DDR) that safeguards genomic integrity. Defects in HR and DDR trigger genome instability and result in cancer predisposition, infertility, developmental defects, neurological diseases or premature aging. Intriguingly, yeast Mec1ATR- and Tel1ATM-dependent phosphorylation promotes Rad51 protein stability during DDR, revealing how Mec1ATR can alleviate proteotoxic stress. Moreover, Mec1ATR- and Tel1ATM-dependent phosphorylation also occurs on DDR-unrelated proteins, suggesting that Mec1ATR and Tel1ATM have a DDR-independent function in protein homeostasis. In this minireview, we first describe how human and budding yeast Rad51 are phosphorylated by multiple protein kinases at different positions to promote homology-directed DNA repair and recombination (HDRR). Then, we discuss recent findings showing that intrinsic structural disorder and Mec1ATR/Tel1ATM-dependent phosphorylation are coordinated in yeast Rad51 to regulate both HR and protein homeostasis.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
6
|
Son MY, Hasty P. Homologous recombination defects and how they affect replication fork maintenance. AIMS GENETICS 2019; 5:192-211. [PMID: 31435521 PMCID: PMC6690234 DOI: 10.3934/genet.2018.4.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Homologous recombination (HR) repairs DNA double strand breaks (DSBs) and stabilizes replication forks (RFs). RAD51 is the recombinase for the HR pathway. To preserve genomic integrity, RAD51 forms a filament on the 3' end of a DSB and on a single-stranded DNA (ssDNA) gap. But unregulated HR results in undesirable chromosomal rearrangements. This review describes the multiple mechanisms that regulate HR with a focus on those mechanisms that promote and contain RAD51 filaments to limit chromosomal rearrangements. If any of these pathways break down and HR becomes unregulated then disease, primarily cancer, can result.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
- The Mays Cancer Center, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, USA
| |
Collapse
|
7
|
Chabot T, Defontaine A, Marquis D, Renodon-Corniere A, Courtois E, Fleury F, Cheraud Y. New Phosphorylation Sites of Rad51 by c-Met Modulates Presynaptic Filament Stability. Cancers (Basel) 2019; 11:cancers11030413. [PMID: 30909596 PMCID: PMC6468871 DOI: 10.3390/cancers11030413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 11/25/2022] Open
Abstract
Genomic instability through deregulation of DNA repair pathways can initiate cancer and subsequently result in resistance to chemo and radiotherapy. Understanding these biological mechanisms is therefore essential to overcome cancer. RAD51 is the central protein of the Homologous Recombination (HR) DNA repair pathway, which leads to faithful DNA repair of DSBs. The recombinase activity of RAD51 requires nucleofilament formation and is regulated by post-translational modifications such as phosphorylation. In the last decade, studies have suggested the existence of a relationship between receptor tyrosine kinases (RTK) and Homologous Recombination DNA repair. Among these RTK the c-MET receptor is often overexpressed or constitutively activated in many cancer types and its inhibition induces the decrease of HR. In this study, we show for the first time that c-MET is able to phosphorylate the RAD51 protein. We demonstrate in vitro that c-MET phosphorylates four tyrosine residues localized mainly in the subunit-subunit interface of RAD51. Whereas these post-translational modifications do not affect the presynaptic filament formation, they strengthen its stability against the inhibitor effect of the BRC peptide obtained from BRCA2. Taken together, these results confirm the role of these modifications in the regulation of the BRCA2-RAD51 interaction and underline the importance of c-MET in DNA damage response.
Collapse
Affiliation(s)
- Thomas Chabot
- Group of Mechanism and Regulation of DNA Repair, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| | - Alain Defontaine
- Group of Molecular Engineering and Glycobiology, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| | - Damien Marquis
- Group of Mechanism and Regulation of DNA Repair, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| | | | - Emmanuelle Courtois
- Group of Mechanism and Regulation of DNA Repair, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| | - Fabrice Fleury
- Group of Mechanism and Regulation of DNA Repair, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| | - Yvonnick Cheraud
- Group of Mechanism and Regulation of DNA Repair, UFIP UMR CNRS 6286/University of Nantes, 44322 Nantes, France.
| |
Collapse
|
8
|
Asan A, Skoko JJ, Woodcock CSC, Wingert BM, Woodcock SR, Normolle D, Huang Y, Stark JM, Camacho CJ, Freeman BA, Neumann CA. Electrophilic fatty acids impair RAD51 function and potentiate the effects of DNA-damaging agents on growth of triple-negative breast cells. J Biol Chem 2018; 294:397-404. [PMID: 30478172 DOI: 10.1074/jbc.ac118.005899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/15/2018] [Indexed: 01/24/2023] Open
Abstract
Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.
Collapse
Affiliation(s)
- Alparslan Asan
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - John J Skoko
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, .,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Chen-Shan Chen Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | - Steven R Woodcock
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel Normolle
- Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yi Huang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - Bruce A Freeman
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Carola A Neumann
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, .,Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania 15213.,Magee-Womens Research Institute, Magee-Womens Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
9
|
Osoegawa A, Gills JJ, Kawabata S, Dennis PA. Rapamycin sensitizes cancer cells to growth inhibition by the PARP inhibitor olaparib. Oncotarget 2017; 8:87044-87053. [PMID: 29152062 PMCID: PMC5675614 DOI: 10.18632/oncotarget.19667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have been developed and tested in a context of combining it with double-stranded (ds) DNA repair defects or inhibitors, as PARP inhibitor impairs single-stranded (ss) DNA break repair, resulting in the activation of the dsDNA break repair machinery. Rapamycin has been widely prescribed for more than a decade and recent studies have revealed that it may inhibit dsDNA break repair. The combination of the PARP inhibitor olaparib and rapamycin synergistically inhibited cell proliferation in non-small cell lung cancer (NSCLC) cells, and even in triple negative breast cancer (TNBC) cells with BRCA1 mutations. Rad51, which forms a polymer on ssDNA upon dsDNA breaks, plays an essential role in homologous recombination. Olaparib induced Rad51 focus formation, while rapamycin successfully inhibited it both in vivo and in vitro, suggesting that this combination worked through the blocking of both ssDNA break repair and dsDNA break repair; hence the cells cannot go through the G2/M checkpoint. The protein level of PARP was a predictive marker for both PAR activity and Rad51 focus formation in this combination. Collectively, these data suggest that this combination could have therapeutic potential in the treatment of cancer with high PARP expression, or in combination with cytotoxic chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Atsushi Osoegawa
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joell J Gills
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shigeru Kawabata
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Phillip A Dennis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Alligand B, Le Breton M, Marquis D, Vallette F, Fleury F. Functional effects of diphosphomimetic mutations at cAbl-mediated phosphorylation sites on Rad51 recombinase activity. Biochimie 2017; 139:115-124. [PMID: 28571978 DOI: 10.1016/j.biochi.2017.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/27/2017] [Indexed: 01/10/2023]
Abstract
Homologous Recombination enables faithful repair of the deleterious double strand breaks of DNA. This pathway relies on Rad51 to catalyze homologous DNA strand exchange. Rad51 is known to be phosphorylated in a sequential manner on Y315 and then on Y54, but the effect of such phosphorylation on Rad51 function remains poorly understood. We have developed a phosphomimetic model in order to study all the phosphorylation states. With the purified phosphomimetic proteins we performed in vitro assays to determine the activity of Rad51. Here we demonstrate the inhibitory effect of the double phosphomimetic mutant and suggest that it may be due to a defect in nucleofilament formation.
Collapse
Affiliation(s)
- Brendan Alligand
- Team 3 Mechanism and Regulation of DNA Repair, UFIP, CNRS UMR 6286, Nantes University, France; Team 9 Apoptosis in Nervous Central System Tumours, CRCINA, INSERM U892, Nantes University, France
| | - Magali Le Breton
- Team 3 Mechanism and Regulation of DNA Repair, UFIP, CNRS UMR 6286, Nantes University, France
| | - Damien Marquis
- Team 3 Mechanism and Regulation of DNA Repair, UFIP, CNRS UMR 6286, Nantes University, France
| | - François Vallette
- Team 9 Apoptosis in Nervous Central System Tumours, CRCINA, INSERM U892, Nantes University, France
| | - Fabrice Fleury
- Team 3 Mechanism and Regulation of DNA Repair, UFIP, CNRS UMR 6286, Nantes University, France.
| |
Collapse
|
11
|
Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc Natl Acad Sci U S A 2016; 113:E6045-E6054. [PMID: 27671650 DOI: 10.1073/pnas.1604807113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The DNA strand exchange protein RAD51 facilitates the central step in homologous recombination, a process fundamentally important for accurate repair of damaged chromosomes, restart of collapsed replication forks, and telomere maintenance. The active form of RAD51 is a nucleoprotein filament that assembles on single-stranded DNA (ssDNA) at the sites of DNA damage. The c-Abl tyrosine kinase and its oncogenic counterpart BCR-ABL fusion kinase phosphorylate human RAD51 on tyrosine residues 54 and 315. We combined biochemical reconstitutions of the DNA strand exchange reactions with total internal reflection fluorescence microscopy to determine how the two phosphorylation events affect the biochemical activities of human RAD51 and properties of the RAD51 nucleoprotein filament. By mimicking RAD51 tyrosine phosphorylation with a nonnatural amino acid, p-carboxymethyl-l-phenylalanine (pCMF), we demonstrated that Y54 phosphorylation enhances the RAD51 recombinase activity by at least two different mechanisms, modifies the RAD51 nucleoprotein filament formation, and allows RAD51 to compete efficiently with ssDNA binding protein RPA. In contrast, Y315 phosphorylation has little effect on the RAD51 activities. Based on our work and previous cellular studies, we propose a mechanism underlying RAD51 activation by c-Abl/BCR-ABL kinases.
Collapse
|
12
|
Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013; 3:113. [PMID: 23675572 PMCID: PMC3650303 DOI: 10.3389/fonc.2013.00113] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School Essen, Germany
| | | | | | | |
Collapse
|
13
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
14
|
Köcher S, Rieckmann T, Rohaly G, Mansour WY, Dikomey E, Dornreiter I, Dahm-Daphi J. Radiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase. Nucleic Acids Res 2012; 40:8336-47. [PMID: 22730303 PMCID: PMC3458552 DOI: 10.1093/nar/gks604] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.
Collapse
Affiliation(s)
- Sabrina Köcher
- Institute of Radiobiology and Molecular Radiation Oncology, Philipps-University of Marburg, Baldingerstr. 35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Tang J, Wang JY, Parker LL. Detection of early Abl kinase activation after ionizing radiation by using a peptide biosensor. Chembiochem 2012; 13:665-73. [PMID: 22334513 PMCID: PMC3429332 DOI: 10.1002/cbic.201100763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Abl protein is a non-receptor tyrosine kinase that undergoes nuclear-cytoplasmic shuttling and is involved in many signaling pathways in the cell. Nuclear Abl is activated by DNA damage to regulate DNA repair, cell-cycle checkpoints and apoptosis. Previous studies have established that ataxia telangiectasia mutated (ATM) activates nuclear Abl by phosphorylating serine 465 (S465) in the kinase domain in response to ionizing radiation (IR). Using a peptide biosensor that specifically reports on the Abl kinase activity, we found that an Abl-S465A mutant, which is not capable of being activated by ATM through the canonical site, was still activated rapidly after IR. We established that DNA-dependent protein kinase (DNAPK) is likely to be responsible for a second pathway to activate Abl early on in the response to IR through phosphorylation at a site other than S465. Our findings show that nuclear and cytoplasmic Abl kinase is activated early on (within 5 min) in response to IR by both ATM and DNAPK, and that although one or the other of these kinases is required, either one is sufficient to activate Abl. These results support the concept of early Abl recruitment by both the ATM and the DNAPK pathways to regulate nuclear events triggered by DNA damage and potentially communicate them to proteins in the cytoplasm.
Collapse
Affiliation(s)
- Jiabin Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| | - Jean Y. Wang
- Department of Medicine and Division of Hematology-Oncology, Moores Cancer Center, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| |
Collapse
|
17
|
Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood 2011; 118:1062-8. [PMID: 21653319 DOI: 10.1182/blood-2010-09-307256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia chronic phase (CML-CP) CD34(+) cells contain numerous DNA double-strand breaks whose unfaithful repair may contribute to chromosomal instability and disease progression to blast phase (CML-BP). These phenomena are often associated with the appearance of imatinib-resistant BCR-ABL1 kinase mutants (eg, T315I) and overexpression of BCR-ABL1. Here we show that BCR-ABL1 (nonmutated and T315I mutant) promoted RAD51 recombinase-mediated unfaithful homeologous recombination repair (HomeoRR) in a dosage-dependent manner. BCR-ABL1 SH3 domain interacts with RAD51 proline-rich regions, resulting in direct phosphorylation of RAD51 on Y315 (pY315). RAD51(pY315) facilitates dissociation from the complex with BCR-ABL1 kinase, migrates to the nucleus, and enhances formation of the nuclear foci indicative of recombination sites. HomeoRR and RAD51 nuclear foci were strongly reduced by RAD51(Y315F) phosphorylation-less mutant. In addition, peptide aptamer mimicking RAD51(pY315) fragment, but not that with Y315F phosphorylation-less substitution, diminished RAD51 foci formation and inhibited HomeoRR in leukemia cells. In conclusion, we postulate that BCR-ABL1 kinase-mediated RAD51(pY315) promotes unfaithful HomeoRR in leukemia cells, which may contribute to accumulation of secondary chromosomal aberrations responsible for CML relapse and progression.
Collapse
|
18
|
Abstract
ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|