1
|
Lee M, Magante K, Gómez-Garzón C, Payne SM, Smith AT. Structural determinants of Vibrio cholerae FeoB nucleotide promiscuity. J Biol Chem 2024; 300:107663. [PMID: 39128725 PMCID: PMC11406355 DOI: 10.1016/j.jbc.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and the GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surrounding the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Kate Magante
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA; John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Lee M, Magante K, Gómez-Garzón C, Payne SM, Smith AT. Structural Determinants of Vibrio cholerae FeoB Nucleotide Promiscuity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595361. [PMID: 38826458 PMCID: PMC11142208 DOI: 10.1101/2024.05.22.595361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Kate Magante
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
- John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| |
Collapse
|
3
|
Iliadi V, Staykova J, Iliadis S, Konstantinidou I, Sivykh P, Romanidou G, Vardikov DF, Cassimos D, Konstantinidis TG. Legionella pneumophila: The Journey from the Environment to the Blood. J Clin Med 2022; 11:jcm11206126. [PMID: 36294446 PMCID: PMC9605555 DOI: 10.3390/jcm11206126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
An outbreak of a potentially fatal form of pneumonia in 1976 and in the annual convention of the American Legion was the first time that Legionella spp. was identified. Thereafter, the term Legionnaires’ disease (LD) was established. The infection in humans is transmitted by the inhalation of aerosols that contain the microorganisms that belong to the Legionellaceae family and the genus Legionella. The genus Legionella contains genetically heterogeneous species and serogroups. The Legionella pneumophila serogroup 1 (Lp1) is the most often detected strain in outbreaks of LD. The pathogenesis of LD infection initiates with the attachment of the bacterial cells to the host cells, and subsequent intracellular replication. Following invasion, Legionella spp. activates its virulence mechanisms: generation of specific compartments of Legionella-containing vacuole (LCV), and expression of genes that encode a type IV secretion system (T4SS) for the translocation of proteins. The ability of L. pneumophila to transmigrate across the lung’s epithelium barrier leads to bacteremia, spread, and invasion of many organs with subsequent manifestations, complications, and septic shock. The clinical manifestations of LD depend on the bacterial load in the aerosol, the virulence factors, and the immune status of the patient. The infection has two distinct forms: the non- pneumatic form or Pontiac fever, which is a milder febrile flu-like illness, and LD, a more severe form, which includes pneumonia. In addition, the extrapulmonary involvement of LD can include heart, brain, abdomen, and joints.
Collapse
Affiliation(s)
- Valeria Iliadi
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | - Jeni Staykova
- Faculty of Public Health, Medical University of Sofia, Byalo More Str. 8, 1527 Sofia, Bulgaria
| | - Sergios Iliadis
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | | | - Polina Sivykh
- State Budgetary Health City Polyclinic No 2 (GBUZ GB2) of Krasnodar, Seleznev Street 4/10, 350059 Krasnodar, Russia
| | - Gioulia Romanidou
- Nephrology Department, General Hospital “Sismanogleio”, 69100 Komotini, Greece
| | - Daniil F. Vardikov
- Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Tkachey Str. 70-16, 192029 St. Petersburg, Russia
| | - Dimitrios Cassimos
- Pediatric Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
- Correspondence: ; Tel.: +30-2551-352005
| |
Collapse
|
4
|
Shin M, Park J, Jin Y, Payne SM, Kim KH, Kim KH. Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity. Arch Biochem Biophys 2020; 685:108350. [PMID: 32220566 PMCID: PMC9841765 DOI: 10.1016/j.abb.2020.108350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
Abstract
Iron is an essential requirement for the survival and virulence of most bacteria. The bacterial ferrous iron transporter protein FeoB functions as a major reduced iron transporter in prokaryotes, but its biochemical mechanism has not been fully elucidated. In the present study, we compared enzymatic properties of the cytosolic portions of pathogenic bacterial FeoBs to elucidate each bacterial strain-specific characteristic of the Feo system. We show that bacterial FeoBs are classified into two distinct groups that possess either a sole GTPase or an NTPase with a substrate promiscuity. This difference in nucleotide preference alters cellular requirements for monovalent and divalent cations. While the hydrolytic activity of the GTP-dependent FeoBs was stimulated by potassium, the action of the NTP-dependent FeoBs was not significantly affected by the presence of monovalent cations. Mutation of Asn11, having a role in potassium-dependent GTP hydrolysis, changed nucleotide specificity of the NTP-dependent FeoB, resulting in loss of ATPase activity. Sequence analysis suggested a possible association of alanine in the G5 motif for the NTP-dependent activity in FeoBs. This demonstration of the distinct enzymatic properties of bacterial FeoBs provides important insights into mechanistic details of Feo iron transport processes, as well as offers a promising species-specific anti-virulence target.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jinsub Park
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yerin Jin
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Shelley M. Payne
- Department of Molecular Biosciences, College of Natural Science, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea,Corresponding author: Kyoung Heon Kim, Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea, , Tel: +82-2-3290-3028
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Liu J, Tian Y, Zhao Y, Zeng R, Chen B, Hu B, Walcott RR. Ferric Uptake Regulator (FurA) is Required for Acidovorax citrulli Virulence on Watermelon. PHYTOPATHOLOGY 2019; 109:1997-2008. [PMID: 31454303 DOI: 10.1094/phyto-05-19-0172-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch, a serious threat to commercial watermelon and melon crop production worldwide. Ferric uptake regulator (Fur) is a global transcription factor that affects a number of virulence-related functions in phytopathogenic bacteria; however, the role of furA has not been determined for A. citrulli. Hence, we constructed an furA deletion mutant and a corresponding complement in the background of A. citrulli strain xlj12 to investigate the role of the gene in siderophore production, concentration of intracellular Fe2+, bacterial sensitivity to hydrogen peroxide, biofilm formation, swimming motility, hypersensitive response induction, and virulence on melon seedlings. The A. citrulli furA deletion mutant displayed increased siderophore production, intracellular Fe2+ concentration, and increased sensitivity to hydrogen peroxide. In contrast, biofilm formation, swimming motility, and virulence on melon seedlings were significantly reduced in the furA mutant. As expected, complementation of the furA deletion mutant restored all phenotypes to wild-type levels. In accordance with the phenotypic results, the expression levels of bfrA and bfrB that encode bacterioferritin, sodB that encodes iron/manganese superoxide dismutase, fliS that encodes a flagellar protein, hrcN that encodes the type III secretion system (T3SS) ATPase, and hrcC that encodes the T3SS outer membrane ring protein were significantly downregulated in the A. citrulli furA deletion mutant. In addition, the expression of feo-related genes and feoA and feoB was significantly upregulated in the furA mutant. Overall, these results indicated that, in A. citrulli, FurA contributes to the regulation of the iron balance system, and affects a variety of virulence-related traits.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Rong Zeng
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ron R Walcott
- Department of Plant Pathology, 4315 Miller Plant Sciences, the University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
6
|
Complex Iron Uptake by the Putrebactin-Mediated and Feo Systems in Shewanella oneidensis. Appl Environ Microbiol 2018; 84:AEM.01752-18. [PMID: 30097446 DOI: 10.1128/aem.01752-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes.IMPORTANCE S. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.
Collapse
|
7
|
Sestok AE, Linkous RO, Smith AT. Toward a mechanistic understanding of Feo-mediated ferrous iron uptake. Metallomics 2018; 10:887-898. [PMID: 29953152 PMCID: PMC6051883 DOI: 10.1039/c8mt00097b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually all organisms require iron and have evolved to obtain this element in free or chelated forms. Under anaerobic or low pH conditions commonly encountered by numerous pathogens, iron predominantly exists in the ferrous (Fe2+) form. The ferrous iron transport (Feo) system is the only widespread mechanism dedicated solely to bacterial ferrous iron import, and this system has been linked to pathogenic virulence, bacterial colonization, and microbial survival. The canonical feo operon encodes for three proteins that comprise the Feo system: FeoA, a small cytoplasmic β-barrel protein; FeoB, a large, polytopic membrane protein with a soluble G-protein domain capable of hydrolyzing GTP; and FeoC, a small, cytoplasmic protein containing a winged-helix motif. While previous studies have revealed insight into soluble and fragmentary domains of the Feo system, the chief membrane-bound component FeoB remains poorly studied. However, recent advances have demonstrated that large quantities of intact FeoB can be overexpressed, purified, and biophysically characterized, revealing glimpses into FeoB function. Two models of full-length FeoB have been published, providing starting points for hypothesis-driven investigations into the mechanism of FeoB-mediated ferrous iron transport. Finally, in vivo studies have begun to shed light on how this system functions as a unique multicomponent complex. In light of these new data, this review will summarize what is known about the Feo system, including recent advancements in FeoB structure and function.
Collapse
Affiliation(s)
- Alexandrea E Sestok
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA.
| | | | | |
Collapse
|
8
|
Expression and purification of functionally active ferrous iron transporter FeoB from Klebsiella pneumoniae. Protein Expr Purif 2017; 142:1-7. [PMID: 28941825 DOI: 10.1016/j.pep.2017.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/26/2022]
Abstract
The acquisition of ferrous iron (Fe2+) is an important virulence factor utilized by several hospital-acquired (nosocomial) pathogens such as Klebsiella pneumoniae to establish infection within human hosts. Virtually all bacteria use the ferrous iron transport system (Feo) to acquire ferrous iron from their environments, which are often biological niches that stabilize Fe2+ relative to Fe3+. However, the details of this process remain poorly understood, likely owing to the few expression and purification systems capable of supplying sufficient quantities of the chief component of the Feo system, the integral membrane GTPase FeoB. This bottleneck has undoubtedly hampered efforts to understand this system in order to target it for therapeutic intervention. In this study, we describe the expression, solubilization, and purification of the Fe2+ transporter from K. pneumoniae, KpFeoB. We show that this protein may be heterologously overexpressed in Escherichia coli as the host organism. After testing several different commercially-available detergents, we have developed a solubilization and purification protocol that produces milligram quantities of KpFeoB with sufficient purity for enzymatic and biophysical analyses. Importantly, we demonstrate that KpFeoB displays robust GTP hydrolysis activity (kcatGTP of ∼10-1 s-1) in the absence of any additional stimulatory factors. Our findings suggest that K. pneumoniae may be capable of using its Feo system to drive Fe2+ import in an active manner.
Collapse
|
9
|
Studies on the X-Ray and Solution Structure of FeoB from Escherichia coli BL21. Biophys J 2017; 110:2642-2650. [PMID: 27332122 DOI: 10.1016/j.bpj.2016.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
The ferrous iron transporter FeoB is an important factor in the iron metabolism of many bacteria. Although several structural studies have been performed on its cytosolic GTPase domain (NFeoB), the full-length structure of FeoB remains elusive. Based on a crystal packing analysis that was performed on crystals of NFeoB, a trimeric structure of the FeoB channel was proposed, where the transport pore runs along the trimer axis. Because this trimer has not been observed in some subsequently solved structures of NFeoB homologs, it remains unclear whether or not the trimer is indeed functionally relevant. Here, pulsed electron-electron double resonance spectroscopy, negative stain electron microscopy, and native mass spectrometry are used to analyze the oligomeric state of different soluble and full-length FeoB constructs. The results show that the full-length protein is predominantly monomeric, whereas dimers and trimers are formed to a small percentage. Furthermore, the solution structure of the switch I region is analyzed by pulsed electron-electron double resonance spectroscopy and a new, to our knowledge, crystal structure of NFeoB from Escherichia coli BL21 is presented.
Collapse
|
10
|
Galazzo L, Maso L, De Rosa E, Bortolus M, Doni D, Acquasaliente L, De Filippis V, Costantini P, Carbonera D. Identifying conformational changes with site-directed spin labeling reveals that the GTPase domain of HydF is a molecular switch. Sci Rep 2017; 7:1714. [PMID: 28490758 PMCID: PMC5431965 DOI: 10.1038/s41598-017-01886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/05/2017] [Indexed: 11/17/2022] Open
Abstract
[FeFe]-hydrogenases catalyse the reduction of protons to hydrogen at a complex 2Fe[4Fe4S] center called H-cluster. The assembly of this active site is a multistep process involving three proteins, HydE, HydF and HydG. According to the current models, HydF has the key double role of scaffold, upon which the final H-cluster precursor is assembled, and carrier to transfer it to the target hydrogenase. The X-ray structure of HydF indicates that the protein is a homodimer with both monomers carrying two functional domains: a C-terminal FeS cluster-binding domain, where the precursor is assembled, and a N-terminal GTPase domain, whose exact contribution to cluster biogenesis and hydrogenase activation is still elusive. We previously obtained several hints suggesting that the binding of GTP to HydF could be involved in the interactions of this scaffold protein with the other maturases and with the hydrogenase itself. In this work, by means of site directed spin labeling coupled to EPR/PELDOR spectroscopy, we explored the conformational changes induced in a recombinant HydF protein by GTP binding, and provide the first clue that the HydF GTPase domain could be involved in the H-cluster assembly working as a molecular switch similarly to other known small GTPases.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Edith De Rosa
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Davide Doni
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
11
|
Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore. Biosci Rep 2016; 36:BSR20160046. [PMID: 26934982 PMCID: PMC4847171 DOI: 10.1042/bsr20160046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The bacterial ferrous iron acquisition protein FeoB assembles as a homotrimer that is predicted to form a central pore lined by conserved cysteine residues. Structure-function analysis of FeoB indicates a putative mechanism more akin to a GTP-gated channel than a transporter. Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.
Collapse
|
12
|
Vibrio cholerae FeoA, FeoB, and FeoC Interact To Form a Complex. J Bacteriol 2016; 198:1160-70. [PMID: 26833408 DOI: 10.1128/jb.00930-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Feo is the major ferrous iron transport system in prokaryotes. Despite having been discovered over 25 years ago and found to be widely distributed among bacteria, Feo is poorly understood, as its structure and mechanism of iron transport have not been determined. The feo operon in Vibrio cholerae is made up of three genes, encoding the FeoA, FeoB, and FeoC proteins, which are all required for Feo system function. FeoA and FeoC are both small cytoplasmic proteins, and their function remains unclear. FeoB, which is thought to function as a ferrous iron permease, is a large integral membrane protein made up of an N-terminal GTPase domain and a C-terminal membrane-spanning region. To date, structural studies of FeoB have been carried out using a truncated form of the protein encompassing only the N-terminal GTPase region. In this report, we show that full-length FeoB forms higher-order complexes when cross-linked in vivo in V. cholerae. Our analysis of these complexes revealed that FeoB can simultaneously associate with both FeoA and FeoC to form a large complex, an observation that has not been reported previously. We demonstrate that interactions between FeoB and FeoA, but not between FeoB and FeoC, are required for complex formation. Additionally, we identify amino acid residues in the GTPase region of FeoB that are required for function of the Feo system and for complex formation. These observations suggest that this large Feo complex may be the active form of Feo that is used for ferrous iron transport. IMPORTANCE The Feo system is the major route for ferrous iron transport in bacteria. In this work, the Vibrio cholerae Feo proteins, FeoA, FeoB, and FeoC, are shown to interact to form a large inner membrane complex in vivo. This is the first report showing an interaction among all three Feo proteins. It is also determined that FeoA, but not FeoC, is required for Feo complex assembly.
Collapse
|
13
|
Lau CKY, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. FEMS Microbiol Rev 2015; 40:273-98. [PMID: 26684538 DOI: 10.1093/femsre/fuv049] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies.
Collapse
Affiliation(s)
- Cheryl K Y Lau
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Karla D Krewulak
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
14
|
Hagelueken G, Duthie FG, Florin N, Schubert E, Schiemann O. Expression, purification and spin labelling of the ferrous iron transporter FeoB from Escherichia coli BL21 for EPR studies. Protein Expr Purif 2015; 114:30-6. [PMID: 26067172 DOI: 10.1016/j.pep.2015.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 01/06/2023]
Abstract
The ferrous iron transporter FeoB is an important factor in the iron metabolism of various bacteria. As a membrane bound GTPase it also represents an interesting evolutionary link between prokaryotic and eukaryotic membrane signalling pathways. To date, structural information for FeoB is limited to the cytosolic GTPase domain and structural features such as the oligomeric state of the transporter in the membrane, and thereby the nature of the transport pore are a matter of constant debate. Recently, EPR distance measurements have become an important tool to investigate such questions in frozen solution. As a prerequisite for these experiments, we designed protocols to express and purify both the cytosolic domain of FeoB (NFeoB) and full-length FeoB from Escherichia coli BL21 in purity, quantity and quality needed for EPR studies. Since FeoB from E. coli contains 12 native cysteines, we incorporated the unnatural amino acid para-acetylphenylalanine (pAcF) into the protein. We spin labelled the mutant protein using the HO4120 spin label and performed preliminary EPR experiments using cw-X-band EPR spectroscopy. Our results provide new insights concerning the oligomeric state of full-length FeoB.
Collapse
Affiliation(s)
- Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
| | - Fraser G Duthie
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Nicole Florin
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Erik Schubert
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| |
Collapse
|
15
|
Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release. Biosci Rep 2014; 34:e00158. [PMID: 25374115 PMCID: PMC4266920 DOI: 10.1042/bsr20140152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.
Collapse
|
16
|
Seyedmohammad S, Born D, Venter H. Expression, purification and functional reconstitution of FeoB, the ferrous iron transporter from Pseudomonas aeruginosa. Protein Expr Purif 2014; 101:138-45. [DOI: 10.1016/j.pep.2014.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 01/13/2023]
|
17
|
Guilfoyle AP, Deshpande CN, Vincent K, Pedroso MM, Schenk G, Maher MJ, Jormakka M. Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate. FEBS J 2014; 281:2254-65. [PMID: 24649829 DOI: 10.1111/febs.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Abstract
GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base.
Collapse
Affiliation(s)
- Amy P Guilfoyle
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 2013; 195:4826-35. [PMID: 23955009 DOI: 10.1128/jb.00738-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ferrous iron transport system Feo is widely distributed among bacterial species, yet its physical structure and mechanism of iron transport are poorly understood. In Vibrio cholerae, the feo operon consists of three genes, feoABC. feoB encodes an 83-kDa protein with an amino-terminal GTPase domain and a carboxy-terminal domain predicted to be embedded in the inner membrane. While FeoB is believed to form the pore for iron transport, the roles of FeoA and FeoC are unknown. In this work, we show that FeoA and FeoC, as well as the more highly conserved FeoB, are all required for iron acquisition by V. cholerae Feo. An in-frame deletion of feoA, feoB, or feoC eliminated iron acquisition. The loss of transport activity in the feoA and feoC mutants was not due to reduced transcription of the feo operon, suggesting that these two small proteins are required for activity of the transporter. feoC was found to encode a protein that interacts with the cytoplasmic domain of FeoB, as determined using the BACTH bacterial two-hybrid system. Two conserved amino acids in FeoC were found to be necessary for the interaction with FeoB in the two-hybrid assay, and when either of these amino acids was mutated in the context of the entire feo operon, iron acquisition via Feo was reduced. No interaction of FeoA with FeoB or FeoC was detected in the BACTH two-hybrid assay.
Collapse
|
19
|
Deshpande CN, McGrath AP, Font J, Guilfoyle AP, Maher MJ, Jormakka M. Structure of an atypical FeoB G-domain reveals a putative domain-swapped dimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:399-404. [PMID: 23545645 PMCID: PMC3614164 DOI: 10.1107/s1744309113005939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/01/2013] [Indexed: 01/15/2023]
Abstract
FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.
Collapse
Affiliation(s)
- Chandrika N. Deshpande
- Structural Biology Program, Centenary Institute, Sydney, NSW 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Aaron P. McGrath
- Structural Biology Program, Centenary Institute, Sydney, NSW 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Josep Font
- Structural Biology Program, Centenary Institute, Sydney, NSW 2042, Australia
| | - Amy P. Guilfoyle
- Structural Biology Program, Centenary Institute, Sydney, NSW 2042, Australia
| | - Megan J. Maher
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mika Jormakka
- Structural Biology Program, Centenary Institute, Sydney, NSW 2042, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Crystal structure of the Klebsiella pneumoniae NFeoB/FeoC complex and roles of FeoC in regulation of Fe2+ transport by the bacterial Feo system. J Bacteriol 2012; 194:6518-26. [PMID: 23024345 DOI: 10.1128/jb.01228-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Feo is a transport system commonly used by bacteria to acquire environmental Fe(2+). It consists of three proteins: FeoA, FeoB, and FeoC. FeoB is a large protein with a cytosolic N-terminal domain (NFeoB) that contains a regulatory G protein domain and a helical S domain. The C-terminal region of FeoB is a transmembrane domain that likely acts as the Fe(2+) permease. NFeoB has been shown to form a trimer pore that may function as an Fe(2+) gate. FeoC is a small winged-helix protein that possesses four conserved cysteine residues with a consensus sequence that likely provides binding sites for the [Fe-S] cluster. Therefore, FeoC is presumed to be an [Fe-S] cluster-dependent regulator that directly controls transcription of the feo operon. Despite the apparent significance of the Feo system, however, the function of FeoC has not been experimentally demonstrated. Here, we show that Klebsiella pneumoniae FeoC (KpFeoC) forms a tight complex with the intracellular N-terminal domain of FeoB (KpNFeoB). The crystal structure of the complex reveals that KpFeoC binds to KpNFeoB between the switch II region of the G protein domain and the effector S domain and that the long KpFeoC W1 loop lies above the KpNFeoB nucleotide-binding site. These interactions suggest that KpFeoC modulates the guanine nucleotide-mediated signal transduction process. Moreover, we showed that binding of KpFeoC disrupts pore formation by interfering with KpNFeoB trimerization. These results provide strong evidence suggesting that KpFeoC plays a crucial role in regulating Fe(2+) transport in Klebsiella pneumonia in addition to the presumed gene regulator role.
Collapse
|
21
|
Ash MR, Maher MJ, Guss JM, Jormakka M. The structure of an N11A mutant of the G-protein domain of FeoB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1511-5. [PMID: 22139154 PMCID: PMC3232127 DOI: 10.1107/s1744309111042965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/17/2011] [Indexed: 01/04/2023]
Abstract
The uptake of ferrous iron in prokaryotes is mediated by the G-protein-coupled membrane protein FeoB. The protein contains two N-terminal soluble domains that are together called `NFeoB'. One of these is a G-protein domain, and GTP hydrolysis by this domain is essential for iron transport. The GTPase activity of NFeoB is accelerated in the presence of potassium ions, which bind at a site adjacent to the nucleotide. One of the ligands at the potassium-binding site is a conserved asparagine residue, which corresponds to Asn11 in Streptococcus thermophilus NFeoB. The structure of an N11A S. thermophilus NFeoB mutant has been determined and refined to a resolution of 1.85 Å; the crystals contained a mixture of mant-GDP-bound and mant-GMP-bound protein. The structure demonstrates how the use of a derivatized nucleotide in cocrystallization experiments can facilitate the growth of diffraction-quality crystals.
Collapse
Affiliation(s)
- Miriam-Rose Ash
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Megan J. Maher
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
- Structural Biology Program, The Centenary Institute, Sydney, NSW 2042, Australia
| | - J. Mitchell Guss
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | - Mika Jormakka
- Structural Biology Program, The Centenary Institute, Sydney, NSW 2042, Australia
| |
Collapse
|
22
|
Ash MR, Maher MJ, Guss JM, Jormakka M. A suite of Switch I and Switch II mutant structures from the G-protein domain of FeoB. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:973-80. [PMID: 22101824 DOI: 10.1107/s0907444911039461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022]
Abstract
The acquisition of ferrous iron in prokaryotes is achieved by the G-protein-coupled membrane protein FeoB. This protein possesses a large C-terminal membrane-spanning domain preceded by two soluble cytoplasmic domains that are together termed 'NFeoB'. The first of these soluble domains is a GTPase domain (G-domain), which is then followed by an entirely α-helical domain. GTP hydrolysis by the G-domain is essential for iron uptake by FeoB, and various NFeoB mutant proteins from Streptococcus thermophilus have been constructed. These mutations investigate the role of conserved amino acids from the protein's critical Switch regions. Five crystal structures of these mutant proteins have been determined. The structures of E66A and E67A mutant proteins were solved in complex with nonhydrolyzable GTP analogues, the structures of T35A and E67A mutant proteins were solved in complex with GDP and finally the structure of the T35S mutant was crystallized without bound nucleotide. As an ensemble, the structures illustrate how small nucleotide-dependent rearrangements at the active site are converted into large rigid-body reorientations of the helical domain in response to GTP binding and hydrolysis. This provides the first evidence of nucleotide-dependent helical domain movement in NFeoB proteins, suggesting a mechanism by which the G-protein domain could structurally communicate with the membrane domain and mediate iron uptake.
Collapse
Affiliation(s)
- Miriam Rose Ash
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
23
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
24
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
25
|
Ash MR, Guilfoyle A, Clarke RJ, Guss JM, Maher MJ, Jormakka M. Potassium-activated GTPase reaction in the G Protein-coupled ferrous iron transporter B. J Biol Chem 2010; 285:14594-602. [PMID: 20220129 PMCID: PMC2863241 DOI: 10.1074/jbc.m110.111914] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/01/2010] [Indexed: 12/22/2022] Open
Abstract
FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.
Collapse
Affiliation(s)
| | - Amy Guilfoyle
- From the Structural Biology Program, Centenary Institute, Sydney, New South Wales 2042, Australia
| | | | | | - Megan J. Maher
- From the Structural Biology Program, Centenary Institute, Sydney, New South Wales 2042, Australia
| | - Mika Jormakka
- From the Structural Biology Program, Centenary Institute, Sydney, New South Wales 2042, Australia
- the Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|