1
|
Zhang Q, Liu X, Zou Z, Zhou B. Evidence from a meta-analysis for the prognostic and clinicopathological importance of DKC1 in malignancies. Future Oncol 2023; 19:473-484. [PMID: 36876511 DOI: 10.2217/fon-2022-1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aim: We conducted a meta-analysis to evaluate the prognostic and clinicopathological relevance of DKC1 in various cancers. Methods: We searched Web of Science, Embase, PubMed, Wanfang and CNKI. Stata SE15.1 was used to calculate the hazard ratio and relative risk with 95% CIs to assess the possible correlations between DKC1 expression levels and overall and disease-free survival, as well as with clinicopathological parameters. Results: We included nine studies, with a total of 2574 patients. There was a meaningful link between elevated DKC1 and poorer disease-free (p < 0.001) and overall survival (p < 0.001). Also, it was linked to advanced tumor node metastasis stage (p = 0.005). Conclusion: High DKC1 expression was predictive of worse prognosis and poorer clinicopathological parameters.
Collapse
Affiliation(s)
- Qin Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Zhenhong Zou
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Tobai H, Endo M, Ishimura M, Moriya K, Yano J, Kanamori K, Sato N, Amanuma F, Maruyama H, Muramatsu H, Shibahara J, Narita M, Fumoto S, Peltier D, Ohga S. Neonatal intestinal obstruction in Hoyeraal-Hreidarsson syndrome with novel RTEL1 variants. Pediatr Blood Cancer 2023; 70:e30250. [PMID: 36776130 DOI: 10.1002/pbc.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023]
Affiliation(s)
- Hiromi Tobai
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan.,Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Mikiya Endo
- Department of Pediatrics, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Kunihiko Moriya
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan.,Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Jun Yano
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Keita Kanamori
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Norio Sato
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Fumitaka Amanuma
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Hidekazu Maruyama
- Division of Pediatrics, Iwate Prefectural Iwai Hospital, Ichinoseki, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, Mitaka, Japan
| | - Masami Narita
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Japan
| | - Seiko Fumoto
- Department of Pediatrics, Kyorin University School of Medicine, Mitaka, Japan
| | - Daniel Peltier
- Pediatric Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| |
Collapse
|
3
|
de novo TINF2 C.845G>A: Pathogenic Variant in Patient with Dyskeratosis Congenita. Balkan J Med Genet 2022; 24:89-93. [PMID: 36249522 PMCID: PMC9524180 DOI: 10.2478/bjmg-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita (DC) is a clinically and genetically heterogeneous, multisystem inherited syndrome with a very high risk for bone marrow failure (BMF) and cancer predisposition. The classical clinical form of DC is characterized by abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. Bone marrow failure is considered to be an important and major complication of DC and the leading cause of death which develops in around 85% of cases. A number of genes involved in telomere maintenance are associated with DC, such as genes that encode the components of the telomerase complex (TERT, DKC1, TERC, NOP10, and NHP2), T-loop assembly protein (RTEL1), telomere capping (CTC1), telomere shelterin complex (TINF2), and telomerase trafficking protein (TCAB1). Mutations in TINF2 have been reported in 11–20% of all patients with DC and have been associated with bone marrow failure. Here we report on a 19-month old boy with very early presentation of bone marrow failure as a first clinical manifestation of DC. Upon first admission, the patient presented with thrombocytopenia and macrocytic anemia. Soon after, his blood counts deteriorated with the development of pancytopenia and aplastic anemia. Four months later, he developed nail dystrophy and skin hyperpigmentation. A de novo heterozygous pathogenic variant c.845G>A, p.(Arg282His) was located in exon 6 of TINF2 gene and was identified via clinical exome sequencing. The findings confirmed the diagnosis of DC. This is the first case with DC due to TINF2 pathogenic variant reported in North Macedonia.
Collapse
|
4
|
Boussaid I, Fontenay M. Translation defects in ribosomopathies. Curr Opin Hematol 2022; 29:119-125. [PMID: 35102070 DOI: 10.1097/moh.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Congenital or acquired ribosomopathies related to mutations or deletions in ribosomal proteins gene or ribosome-associated proteins exhibit defective ribosome biogenesis that expose the cell to translation defects. The mechanisms leading to low translation rate, loss-of-translation fidelity and translation selectivity are reviewed. RECENT FINDINGS New quantitative techniques to measure ribosome component stoichiometry reveal that the pool of ribosomes could be heterogeneous and/or decreased with a limited number of translationally competent ribosomes. During development or cell differentiation, the absence of specific ribosome components or their replacement by paralogs generate heterogeneous ribosomes that are specialized in the translation of specific mRNAs. Decreased ribosome content by defective biosynthesis of a subunit results in translation selectivity at the expense of short structured transcripts with high codon adaptation index. Activation of p53, as a witness of nucleolar stress associated with the hematological phenotype of ribosomopathies participates in translational reprogramming of the cell by interfering with cap-dependent translation. SUMMARY Translation selectivity is a common feature of ribosomopathies. p53 is more selectively activated in ribosomopathies with erythroid phenotype. The discovery of its dual role in regulating transcriptional and translational program supports new therapeutic perspectives.
Collapse
Affiliation(s)
- Ismael Boussaid
- Université de Paris, Laboratory of excellence for Red blood cells GR-Ex, and Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
| | | |
Collapse
|
5
|
Dorgaleleh S, Naghipoor K, Hajimohammadi Z, Dastaviz F, Oladnabi M. Molecular insight of dyskeratosis congenita: Defects in telomere length homeostasis. J Clin Transl Res 2022; 8:20-30. [PMID: 35097237 PMCID: PMC8791241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare disease and is a heterogenous disorder, with its inheritance patterns as autosomal dominant, autosomal recessive, and X-linked recessive. This disorder occurs due to faulty maintenance of telomeres in stem cells. This congenital condition is diagnosed with three symptoms: oral leukoplakia, nail dystrophy, and abnormal skin pigmentation. However, because it has a wide range of symptoms, it may have phenotypes similar to other diseases. For this reason, it is necessary to use methods of measuring the Telomere Length (TL) and determining the shortness of the telomere in these patients so that it can be distinguished from other diseases. Today, the Next Generation Sequencing technique accurately detects mutations in the target genes. AIM This work aims to review and summarize how each of the DC genes is involved in TL, and how to diagnose and differentiate the disease using clinical signs and methods to measure TL. It also offers treatments for DC patients, such as Hematopoietic Stem Cell Transplantation and Androgen therapy. RELEVANCE FOR PATIENTS In DC patients, the genes involved in telomere homeostasis are mutated. Because these patients may have an overlapping phenotype with other diseases, it is best to perform whole-exome sequencing after genetics counseling to find the relevant mutation. As DC is a multi-systemic disease, we need to monitor patients frequently through annual lung function tests, ultrasounds, gynecological examinations, and skin examinations.
Collapse
Affiliation(s)
- Saeed Dorgaleleh
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Karim Naghipoor
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Hajimohammadi
- 2Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Dastaviz
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- 3Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran,4Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
Corresponding author: Morteza Oladnabi Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran. Tel: +981732459995
| |
Collapse
|
6
|
Ghosh M, Hill CL, Alsudayri A, Lallier SW, Hayes D, Wijeratne S, Tan ZH, Chiang T, Mahoney JE, Carraro G, Stripp BR, Reynolds SD. Repeated injury promotes tracheobronchial tissue stem cell attrition. Stem Cells Transl Med 2021; 10:1696-1713. [PMID: 34546001 PMCID: PMC8641087 DOI: 10.1002/sctm.21-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease has been attributed to stem cell aging and/or exhaustion. We investigated these mechanisms using mouse and human tracheobronchial tissue‐specific stem cells (TSC). In mouse, chromatin labeling and flow cytometry demonstrated that naphthalene (NA) injury activated a subset of TSC. These activated TSC continued to proliferate after the epithelium was repaired and a clone study demonstrated that ~96% of activated TSC underwent terminal differentiation. Despite TSC attrition, epithelial repair after a second NA injury was normal. The second injury accelerated proliferation of previously activated TSC and a nucleotide‐label retention study indicated that the second injury recruited TSC that were quiescent during the first injury. These mouse studies indicate that (a) injury causes selective activation of the TSC pool; (b) activated TSC are predisposed to further proliferation; and (c) the activated state leads to terminal differentiation. In human TSC, repeated proliferation also led to terminal differentiation and depleted the TSC pool. A clone study identified long‐ and short‐lived TSC and showed that short‐lived TSC clones had significantly shorter telomeres than their long‐lived counterparts. The TSC pool was significantly depleted in dyskeratosis congenita donors, who harbor mutations in telomere biology genes. The remaining TSC had short telomeres and short lifespans. Collectively, the mouse and human studies support a model in which epithelial injury increases the biological age of the responding TSC. When applied to chronic lung disease, this model suggests that repeated injury accelerates the biological aging process resulting in abnormal repair and disease initiation.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Medicine, University of Colorado-Denver, Denver, Colorado, USA
| | - Cynthia L Hill
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alfahdah Alsudayri
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Scott W Lallier
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don Hayes
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Saranga Wijeratne
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zhang Hong Tan
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - John E Mahoney
- Cystic Fibrosis Foundation Therapeutics, Lexington, Massachusetts, USA.,Cystic Fibrosis Foundation, Bethesda, Maryland, USA
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, California, USA
| | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, California, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Baxley RM, Leung W, Schmit MM, Matson JP, Yin L, Oram MK, Wang L, Taylor J, Hedberg J, Rogers CB, Harvey AJ, Basu D, Taylor JC, Pagnamenta AT, Dreau H, Craft J, Ormondroyd E, Watkins H, Hendrickson EA, Mace EM, Orange JS, Aihara H, Stewart GS, Blair E, Cook JG, Bielinsky AK. Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun 2021; 12:1626. [PMID: 33712616 PMCID: PMC7955084 DOI: 10.1038/s41467-021-21878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.
Collapse
Affiliation(s)
- Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megan M Schmit
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marissa K Oram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam J Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Debashree Basu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jenny C Taylor
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Alistair T Pagnamenta
- Wellcome Centre Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7BN, UK
| | - Helene Dreau
- Department of Haematology, University of Oxford, Oxford, OX3 7BN, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jordan S Orange
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Shin S, Suh DI, Ko JM, Park JD, Lee JM, Yi NJ, Kim YT, Park S, Lee S, Koh J, Choi YH. Combined lung and liver transplantation for noncirrhotic portal hypertension with severe hepatopulmonary syndrome in a patient with dyskeratosis congenita. Pediatr Transplant 2021; 25:e13802. [PMID: 32777145 DOI: 10.1111/petr.13802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
DC is caused by defects at the level of telomere maintenance, and cells from patients with this disease have abnormally short telomeres and show premature senescence. One consequence of DC is bone marrow failure. Thus, patients with DC often require HSCT. However, HSCT does not ameliorate other DC-related manifestations. In fact, HSCT can accelerate organ dysfunction due to treatment-related complications, and solid organ transplantation is required in some patients with DC. In this report, we describe the clinical course of a 5-year-old boy who was transferred to our hospital because of progressive dyspnea, 2 years after HSCT. At admission, he had tachypnea and hypoxemia. A liver biopsy was performed for suspected HPS caused by PH, and LT was considered. Eventually, his hypoxemia worsened, and he was transferred to a PICU and started on VA ECMO. He subsequently underwent a CLLT. ECMO was stopped on post-operative day 12, extubation was achieved on post-operative day 29, and the patient recovered well from the surgery. Our results show that CLLT could be a life-saving treatment option for DC patients with very severe HPS in whom a poor outcome is expected after LT.
Collapse
Affiliation(s)
- Sohyun Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Jeong-Moo Lee
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - Samina Park
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Yu Hyeon Choi
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
9
|
Bellet JS. Pediatric Nail Disorders. Dermatol Clin 2021; 39:231-243. [PMID: 33745636 DOI: 10.1016/j.det.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many pediatric nail findings are normal variants and are no cause for alarm. Others represent congenital abnormalities or genetic syndromes for which there is no cure. Still others are inflammatory or infectious entities that require treatment. Pediatric nail disorders are reviewed, along with management.
Collapse
Affiliation(s)
- Jane Sanders Bellet
- Duke University School of Medicine, 5324 McFarland Drive, Suite 410, Durham, NC 27707, USA.
| |
Collapse
|
10
|
Mortazavi H, Safi Y, Baharvand M, Jafari S, Anbari F, Rahmani S. Oral White Lesions: An Updated Clinical Diagnostic Decision Tree. Dent J (Basel) 2019; 7:dj7010015. [PMID: 30736423 PMCID: PMC6473409 DOI: 10.3390/dj7010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Diagnosis of oral white lesions might be quite challenging. This review article aimed to introduce a decision tree for oral white lesions according to their clinical features. General search engines and specialized databases including PubMed, PubMed Central, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of MeSH keywords such as “mouth disease”, “oral keratosis”, “oral leukokeratosis”, and “oral leukoplakia”. Related English-language articles published since 2000 to 2017, including reviews, meta-analyses, and original papers (randomized or nonrandomized clinical trials; prospective or retrospective cohort studies), case reports, and case series about oral diseases were appraised. Upon compilation of data, oral white lesions were categorized into two major groups according to their nature of development: Congenital or acquired lesions and four subgroups: Lesions which can be scraped off or not and lesions with the special pattern or not. In total, more than 20 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by a stepwise progression method.
Collapse
Affiliation(s)
- Hamed Mortazavi
- Oral Medicine Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| | - Yaser Safi
- Oral and Maxillofacial Radiology Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| | - Maryam Baharvand
- Oral Medicine Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| | - Soudeh Jafari
- Oral Medicine Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| | - Fahimeh Anbari
- Oral Medicine Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| | - Somayeh Rahmani
- Oral Medicine Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
| |
Collapse
|
11
|
Fatehi K, Thiagarajan S, Dhar H, Chaukar D, DCruz A. Squamous cell carcinoma of the tongue in a patient with dyskeratosis congenita: a rare entity. Br J Oral Maxillofac Surg 2019; 57:79-81. [DOI: 10.1016/j.bjoms.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|
12
|
Serindere G. Oral and Dental Changes of Dyskeratosis Congenita: A Case Report with Literature Review. JOURNAL OF ADVANCED ORAL RESEARCH 2018. [DOI: 10.1177/2320206818789761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dyskeratosis congenita (DC) is an uncommon disease characterized by nail dystrophy, cutaneous hyperpigmentation, leukoplakia, pancytopenia, and malignant transformation. There can be some oral and dental changes such as oral leukoplakia, increase in tooth decay, hypodontia, thinning of enamel layer, aggressive periodontitis, intraoral brown pigmentation, missing tooth, taurodontism, and blunted roots. Most of cases belong to dermatology or pediatrics department. There are few reports about dentistry. The aim of this report is to lay emphasis on this fatal syndrome among dentists about the multisystem findings and oro-dental changes. Thus, this information may aid dentists in early diagnosis. A case of 21-year-old male diagnosed with DC is reported.
Collapse
Affiliation(s)
- Gozde Serindere
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
13
|
Olivieri C, Mondino A, Chinello M, Risso A, Finale E, Lanciotti M, Guala A. Clinical heterogeneity in a family with DKC1 mutation, dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome in first cousins. Pediatr Rep 2017; 9:7301. [PMID: 29081935 PMCID: PMC5643882 DOI: 10.4081/pr.2017.7301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure disorder characterized by mucocutaneous features (skin pigmentation, nail dystrophy and oral leukoplakia), pulmonary fibrosis, hematologic and solid malignancies. Its severe form, recognized as Hoyeraal-Hreidarsson syndrome (HHS), also includes cerebellar hypoplasia, microcephaly, developmental delay and prenatal growth retardation. In literature phenotypic variability among DC patients sharing the same mutation is wellknown. To our knowledge this report describes for the first time a family of DC patients, characterized by a member with features of classic DC and another one with some features of HHS, both with the same mutation in DKC1. Our family confirms again that one mutation can be associated with different phenotypes and different hematological manifestations. It's possible to speculate that there are likely to be patients who do not clinically fit neatly into either classical DC or HHS, but whose clinical features are due to mutations in DKC1 or in genes responsible for autosomal DC/HHS.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Public and Pediatric Health Sciences, University of Turin
| | - Anna Mondino
- Department of Public and Pediatric Health Sciences, University of Turin
| | - Matteo Chinello
- Department of Pediatric Hematology and Oncology, Policlinico G.B. Rossi, Verona
| | - Alessandra Risso
- Departement of Hematology, City of Health and Science, University of Turin
| | | | - Marina Lanciotti
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, G. Gaslini Children's Hospital, Genoa, Italy
| | | |
Collapse
|
14
|
Thanos A, Todorich B, Hypes SM, Yonekawa Y, Thomas B, Randhawa S, Drenser KA, Trese MT. RETINAL VASCULAR TORTUOSITY AND EXUDATIVE RETINOPATHY IN A FAMILY WITH DYSKERATOSIS CONGENITA MASQUERADING AS FAMILIAL EXUDATIVE VITREORETINOPATHY. Retin Cases Brief Rep 2017; 11 Suppl 1:S187-S190. [PMID: 27685501 DOI: 10.1097/icb.0000000000000430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PURPOSE To report a novel presentation of dyskeratosis congenita masquerading as familial exudative vitreoretinopathy. METHODS Observational case series involving single family and literature review. RESULTS A brother and sister were diagnosed with familial exudative vitreoretinopathy at ages 4 and 2, respectively. Both patients were managed with laser photocoagulation. Eight years after the initial presentation, both siblings developed pancytopenia secondary to bone marrow failure. Laboratory work-up revealed severely shortened telomere length in both patients, and genetic testing revealed a missense mutation in the gene that encodes the reverse transcriptase component of telomerase, confirming the diagnosis of dyskeratosis congenita. The father of both children was a carrier of the same mutation, who exhibited marked retinal vascular tortuosity of the second-order vessels. CONCLUSION Dyskeratosis congenita is a severe multisystem disorder, which should be considered in cases of pediatric exudative retinopathies with concurrent signs and/or symptoms of bone marrow failure.
Collapse
Affiliation(s)
- Aristomenis Thanos
- *Associated Retinal Consultants, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan; †Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan; ‡Department of Ophthalmology, Beaumont Hospital-Southshore Campus, Trenton, Michigan; §Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; ¶Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and **Florida Retina Institute, Jacksonville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Venugopal R, Bavle RM, Konda P, Muniswamappa S, Makarla S. Familial Cancers of Head and Neck Region. J Clin Diagn Res 2017; 11:ZE01-ZE06. [PMID: 28764308 DOI: 10.7860/jcdr/2017/25920.9967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023]
Abstract
Cancers that occur in families more often than would be expected by chance are termed as familial cancers. They occur due to an inherited genetic mutation and account for 5%-10% of all cancers. This review article presents some of the common Familial Cancer Syndromes (FCS) such as MEN 2B, hyperparathyroidism-jaw tumour syndrome, familial oral squamous cell carcinoma, melanoma, nasopharyngeal carcinoma, paraganglioma, neurofibroma and other syndromes associated with head and neck region.
Collapse
Affiliation(s)
- Reshma Venugopal
- Senior Lecturer, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Radhika Manoj Bavle
- Professor and Head, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Paremala Konda
- Reader, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Sudhakara Muniswamappa
- Reader, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| | - Soumya Makarla
- Reader, Department of Oral Pathology, Krishnadevaraya College of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
16
|
Hoffman H, Rice C, Skordalakes E. Structural Analysis Reveals the Deleterious Effects of Telomerase Mutations in Bone Marrow Failure Syndromes. J Biol Chem 2017; 292:4593-4601. [PMID: 28154186 DOI: 10.1074/jbc.m116.771204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Naturally occurring mutations in the ribonucleoprotein reverse transcriptase, telomerase, are associated with the bone marrow failure syndromes dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary fibrosis. However, the mechanism by which these mutations impact telomerase function remains unknown. Here we present the structure of the human telomerase C-terminal extension (or thumb domain) determined by the method of single-wavelength anomalous diffraction to 2.31 Å resolution. We also used direct telomerase activity and nucleic acid binding assays to explain how naturally occurring mutations within this portion of telomerase contribute to human disease. The single mutations localize within three highly conserved regions of the telomerase thumb domain referred to as motifs E-I (thumb loop and helix), E-II, and E-III (the FVYL pocket, comprising the hydrophobic residues Phe-1012, Val-1025, Tyr-1089, and Leu-1092). Biochemical data show that the mutations associated with dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary fibrosis disrupt the binding between the protein subunit reverse transcriptase of the telomerase and its nucleic acid substrates leading to loss of telomerase activity and processivity. Collectively our data show that although these mutations do not alter the overall stability or expression of telomerase reverse transcriptase, these rare genetic disorders are associated with an impaired telomerase holoenzyme that is unable to correctly assemble with its nucleic acid substrates, leading to incomplete telomere extension and telomere attrition, which are hallmarks of these diseases.
Collapse
Affiliation(s)
- Hunter Hoffman
- From the Department of Gene Expression and Regulation, Wistar Institute, Philadelphia, Pennsylvania 19104 and
| | - Cory Rice
- From the Department of Gene Expression and Regulation, Wistar Institute, Philadelphia, Pennsylvania 19104 and.,the Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Emmanuel Skordalakes
- From the Department of Gene Expression and Regulation, Wistar Institute, Philadelphia, Pennsylvania 19104 and .,the Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
17
|
Penzo M, Ludovini V, Treré D, Siggillino A, Vannucci J, Bellezza G, Crinò L, Montanaro L. Dyskerin and TERC expression may condition survival in lung cancer patients. Oncotarget 2016; 6:21755-60. [PMID: 26301749 PMCID: PMC4673301 DOI: 10.18632/oncotarget.4580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022] Open
Abstract
Dyskerin mediates both the modification of uridine on ribosomal and small nuclear RNAs and the stabilization of the telomerase RNA component (TERC). In human tumors dyskerin expression was found to be associated with both rRNA modification and TERC levels. Moreover, dyskerin overexpression has been linked to unfavorable prognosis in a variety of tumor types, however an explanation for the latter association is not available. To clarify this point, we analyzed the connection between dyskerin expression, TERC levels and clinical outcome in two series of primary lung cancers, differing for the presence of TERC gene amplification, a genetic alteration inducing strong TERC overexpression. TERC levels were significantly higher in tumors bearing TERC gene amplification (P = 0.017). In addition, the well-established association between dyskerin expression and TERC levels was observed only in the series without TERC gene amplification (P = 0.003), while it was not present in TERC amplified tumors (P = 0.929). Similarly, the association between dyskerin expression and survival was found in cases not bearing TERC gene amplification (P = 0.009) and was not observed in TERC amplified tumors (P = 0.584). These results indicate that the influence of dyskerin expression on tumor clinical outcome is linked to its role on the maintenance of high levels of TERC.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, I-40138, Italy
| | - Vienna Ludovini
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, I-06156, Italy
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, I-40138, Italy
| | - Annamaria Siggillino
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, I-06156, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Perugia, Perugia, I-06156, Italy
| | - Guido Bellezza
- Institute of Pathological Anatomy and Histology, University of Perugia, Perugia, I-06156, Italy
| | - Lucio Crinò
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, I-06156, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, I-40138, Italy
| |
Collapse
|
18
|
Harel I, Brunet A. The African Turquoise Killifish: A Model for Exploring Vertebrate Aging and Diseases in the Fast Lane. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:275-279. [PMID: 26642856 DOI: 10.1101/sqb.2015.80.027524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Why and how organisms age remains a mystery, and it defines one of the biggest challenges in biology. Aging is also the primary risk factor for many human pathologies, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. Thus, manipulating the aging rate and potentially postponing the onset of these devastating diseases could have a tremendous impact on human health. Recent studies, relying primarily on nonvertebrate short-lived model systems, have shown the importance of both genetic and environmental factors in modulating the aging rate. However, relatively little is known about aging in vertebrates or what processes may be unique and specific to these complex organisms. Here we discuss how advances in genomics and genome editing have significantly expanded our ability to probe the aging process in a vertebrate system. We highlight recent findings from a naturally short-lived vertebrate, the African turquoise killifish, which provides an attractive platform for exploring mechanisms underlying vertebrate aging and age-related diseases.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California 94305 Glenn Laboratories for the Biology of Aging at Stanford, Stanford, California 94305
| |
Collapse
|
19
|
[The study of genetic instability in patients with Dyskeratosis congenital]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:770-4. [PMID: 26462779 PMCID: PMC7342708 DOI: 10.3760/cma.j.issn.0253-2727.2015.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
目的 研究先天性角化不良症(DC)患者细胞遗传不稳定性、分析其可能的机制及其与造血衰竭严重程度的相关性。 方法 应用彗星试验检测4例DC患者、29例Fanconi贫血患者和24名正常志愿者的外周血淋巴细胞,比较各组彗星头部DNA百分比(HeadDNA%)、彗星尾部DNA百分比(TailDNA%)、尾矩(TM)、Olive尾矩(OTM)和彗星细胞率(CCP),结合丝裂霉素C(MMC)试验和骨髓造血细胞常规染色体核型结果进行分析。 结果 ①4例DC患者均未发现克隆性异常染色体核型。②DC组的TM (6.77±0.90)、OTM(6.19±0.80)和CCP[(46.00±5.03)%]均明显高于正常对照组[0.61±0.49、0.66±0.42、(5.91±3.19)%],差异均有统计学意义(P值均<0.05),与Fanconi贫血组[7.81±3.58、6.65±2.21、(56.03±13.47)%]比较差异无统计学意义(P值均≥0.05)。③在MMC 80 µg/L条件下DC组畸变细胞率明显低于Fanconi贫血组[(21.00±3.16)%对(31.97±6.33)%,P=0.003]。④DC患者的CCP、OTM、TailDNA%、TM与其外周血HGB水平和PLT、中性粒细胞绝对计数无明显相关性(P>0.05)。 结论 DC患者细胞遗传不稳定性显著增高,而DNA损伤修复机制基本正常;DC遗传不稳定程度与已经发生的造血衰竭严重程度无相关。
Collapse
|
20
|
Successful T-cell-depleted haploidentical hematopoietic stem cell transplantation in a child with dyskeratosis congenita after a fludarabine-based conditioning regimen. J Pediatr Hematol Oncol 2015; 37:322-6. [PMID: 25374286 DOI: 10.1097/mph.0000000000000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure for marrow failure associated with dyskeratosis congenita (DC). Data on transplants from alternative donors are limited. We describe a boy with DC and severe aplastic anemia who underwent haploidentical T-cell depleted HSCT using a reduced-intensity conditioning regimen. He underwent engraftment without toxicity or GVHD. His posttransplant course was complicated by EBV reactivation, treated with rituximab and EBV-specific T lymphocytes. After 26 months, he is in complete chimerism, with normal blood count and no sign of GVHD or pulmonary dysfunction. To the best of our knowledge, this is the first report of DC successfully treated with allogeneic HSCT from a haploidentical family donor.
Collapse
|
21
|
Egusquiaguirre SP, Manguán-García C, Pintado-Berninches L, Iarriccio L, Carbajo D, Albericio F, Royo M, Pedraz JL, Hernández RM, Perona R, Igartua M. Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: A promising approach for the treatment of defective telomerase disorders. Eur J Pharm Biopharm 2015; 91:91-102. [DOI: 10.1016/j.ejpb.2015.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
|
22
|
Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: Dyskeratosis congenita - update 2015. Eur J Hum Genet 2015; 23:ejhg2014170. [PMID: 25182133 PMCID: PMC4667501 DOI: 10.1038/ejhg.2014.170] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023] Open
Affiliation(s)
- Inderjeet Dokal
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Tom Vulliamy
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Whitechapel, London, UK
| | - Philip Mason
- Paediatric Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Monica Bessler
- Paediatric Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
23
|
Singh M, Wang Z, Cascio D, Feigon J. Structure and interactions of the CS domain of human H/ACA RNP assembly protein Shq1. J Mol Biol 2015; 427:807-823. [PMID: 25553844 PMCID: PMC4323627 DOI: 10.1016/j.jmb.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022]
Abstract
Shq1 is an essential protein involved in the early steps of biogenesis and assembly of H/ACA ribonucleoprotein particles (RNPs). Shq1 binds to dyskerin (Cbf5 in yeast) at an early step of H/ACA RNP assembly and is subsequently displaced by the H/ACA RNA. Shq1 contains an N-terminal CS and a C-terminal Shq1-specific domain (SSD). Dyskerin harbors many mutations associated with dyskeratosis congenita. Structures of yeast Shq1 SSD bound to Cbf5 revealed that only a subset of these mutations is in the SSD binding site, implicating another subset in the putative CS binding site. Here, we present the crystal structure of human Shq1 CS (hCS) and the nuclear magnetic resonance (NMR) and crystal structures of hCS containing a serine substitution for proline 22 that is associated with some prostate cancers. The structure of hCS is similar to yeast Shq1 CS domain (yCS) and consists of two β-sheets that form an immunoglobulin-like β-sandwich fold. The N-terminal affinity tag sequence AHHHHHH associates with a neighboring protein in the crystal lattice to form an extra β-strand. Deletion of this tag was required to get spectra suitable for NMR structure determination, while the tag was required for crystallization. NMR chemical shift perturbation (CSP) experiments with peptides derived from putative CS binding sites on dyskerin and Cbf5 revealed a conserved surface on CS important for Cbf5/dyskerin binding. A HADDOCK (high-ambiguity-driven protein-protein docking) model of a Shq1-Cbf5 complex that defines the position of CS domain in the pre-H/ACA RNP was calculated using the CSP data.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; University of California Los Angeles-Department of Energy (UCLA-DOE) Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 2015; 160:1013-1026. [PMID: 25684364 DOI: 10.1016/j.cell.2015.01.038] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
VIDEO ABSTRACT Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here, we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de-novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2-3 months. As a proof of principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high-throughput manner and for investigating candidates arising from human genome-wide studies.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ben Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew F Pech
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Biochemistry Department, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Elisa Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sabrina C Sharp
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Biochemistry Department, Stanford University School of Medicine, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin North Am 2015; 26:123-41. [PMID: 24794262 DOI: 10.1016/j.coms.2014.01.001] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide predominately associated with tobacco use. Changing cause and increased incidence in oropharyngeal carcinomas is associated with high-risk types of human papilloma virus and has an improved survival. Optical devices may augment visual oral examination; however, their lack of specificity still warrants tissue evaluation/biopsy. Histologic factors of oral carcinomas are critical for patient management and prognostic determination. Clinical biomarkers are still needed to improve early detection, predict malignant transformation, and optimize therapies.
Collapse
Affiliation(s)
- Nadarajah Vigneswaran
- Oral and Maxillofacial Pathology Biopsy Service, The University of Texas School of Dentistry at Houston, 1941 East Road BBSB, Room 5320, Houston, TX 77054, USA.
| | - Michelle D Williams
- Surgical Pathology Fellowship Program, Head & Neck Section, Department of Pathology, UT MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit #085, Houston, TX 77030, USA
| |
Collapse
|
26
|
Koruyucu M, Barlak P, Seymen F. Oral and dental findings of dyskeratosis congenita. Case Rep Dent 2014; 2014:454128. [PMID: 25610666 PMCID: PMC4290661 DOI: 10.1155/2014/454128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenital (DC) is a rare condition characterized by reticulate skin hyperpigmentation, mucosal leukoplakia, and nail dystrophy. More serious features are bone marrow involvement with pancytopenia and a predisposition to malignancy. The purpose of this case report is to describe the oral and dental findings in children with DC syndrome. A 10-year-old male diagnosed with DC was admitted because of extensive caries and toothache. Inadequate oral hygiene and extensive caries were observed in oral examination of the patient. Plaque accumulation was seen in gingival border of maxillary teeth. Papillary atrophy on the tongue was observed. Short and blunted roots of mandible incisors and upper and lower molars were determined on the radiographic examination. Dryness on the lips and commisuras, ectropion on his eyes, and epiphora were observed. Hematologic tests were performed and showed aplastic anemia at the age of 2. At the age of 4, the bone marrow transplantation was performed. Dermatological findings occurred after the bone marrow transplantation. The skin of the patient was thin, dry, and wrinkled in some areas. He had palmoplantar hyperkeratosis and syndactylia on his fingers. Endodontic treatment procedures were applied and other extensive caries are still being restored. The patient will be given full preventive care during regular follow-up. Oral hygiene was improved to the optimum level.
Collapse
Affiliation(s)
- Mine Koruyucu
- Faculty of Dentistry, Department of Pedodontics, Istanbul University, 34093 Istanbul, Turkey
| | - Pelin Barlak
- Faculty of Dentistry, Department of Pedodontics, Istanbul University, 34093 Istanbul, Turkey
| | - Figen Seymen
- Faculty of Dentistry, Department of Pedodontics, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
27
|
Moinho R, Brett A, Ferreira G, Lemos S. Pneumococcal vaccine failure: can it be a primary immunodeficiency? BMJ Case Rep 2014; 2014:bcr2014204714. [PMID: 24925540 PMCID: PMC4069748 DOI: 10.1136/bcr-2014-204714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 12/25/2022] Open
Abstract
Vaccine failure is a rare condition and the need to investigate a primary immunodeficiency is controversial. We present the case of a 4-year-old boy, with complete antipneumococcal vaccination, who had necrotising pneumonia with pleural effusion and severe pancytopaenia with need for transfusion. A vaccine-serotype Streptococcus pneumoniae was isolated in the blood culture. On follow-up, detailed medical history, laboratory and genetic investigation led to the diagnosis of X linked dyskeratosis congenita. Dyskeratosis congenita is an inherited disorder that causes shortening or dysfunction of telomeres, affecting mainly rapidly dividing cells (particularly in the skin and haematopoietic system). It leads to bone marrow failure, combined immunodeficiency and predisposition to cancer. The confirmation of this diagnosis allows genetic counselling and medical monitoring of these patients, in order to detect early complications such as bone marrow aplasia or malignancies.
Collapse
Affiliation(s)
- Rita Moinho
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Ana Brett
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Gisela Ferreira
- Department of Serviço de Hematologia, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| | - Sónia Lemos
- Hospital Pediátrico de Coimbra, Centro Hospitalar e Universitário de coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
29
|
Abstract
Pluripotent stem cells (PSCs) have the potential to produce any types of cells from all three basic germ layers and the capacity to self-renew and proliferate indefinitely in vitro. The two main types of PSCs, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), share common features such as colony morphology, high expression of Oct4 and Nanog, and strong alkaline phosphatase activity. In recent years, increasing evidences suggest that telomere length represents another important internal factor in maintaining stem cell pluripotency. Telomere length homeostasis and its structural integrity help to protect chromosome ends from recombination, end fusion, and DNA damage responses, ensuring the divisional ability of mammalian cells. PSCs generally exhibit high telomerase activity to maintain their extremely long and stable telomeres, and emerging data indicate the alternative lengthening of telomeres (ALT) pathway may play an important role in telomere functions too. Such characteristics are likely key to their abilities to differentiate into diverse cell types in vivo. In this review, we will focus on the function and regulation of telomeres in ESCs and iPSCs, thereby shedding light on the importance of telomere length to pluripotency and the mechanisms that regulate telomeres in PSCs.
Collapse
|
30
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
31
|
Batista LFZ. Telomere biology in stem cells and reprogramming. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:67-88. [PMID: 24993698 DOI: 10.1016/b978-0-12-397898-1.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase expression in humans is restricted to different populations of stem and progenitor cells, being silenced in most somatic tissues. Efficient telomere homeostasis is essential for embryonic and adult stem cell function and therefore essential for tissue homeostasis throughout organismal life. Accordingly, the mutations in telomerase culminate in reduced stem cell function both in vivo and in vitro and have been associated with tissue dysfunction in human patients. Despite the importance of telomerase for stem cell biology, the mechanisms behind telomerase regulation during development are still poorly understood, mostly due to difficulties in acquiring and maintaining pluripotent stem cell populations in culture. In this chapter, we will analyze recent developments in this field, including the importance of efficient telomere homeostasis in different stem cell types and the role of telomerase in different techniques used for cellular reprogramming.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Carrillo J, González A, Manguán-García C, Pintado-Berninches L, Perona R. p53 pathway activation by telomere attrition in X-DC primary fibroblasts occurs in the absence of ribosome biogenesis failure and as a consequence of DNA damage. Clin Transl Oncol 2013; 16:529-38. [PMID: 24065372 DOI: 10.1007/s12094-013-1112-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome with high clinical heterogeneity. Various mutations have been reported in DC patients, affecting genes that code for components of H/ACA ribonucleoproteins, proteins of the telomerase complex and components of the shelterin complex. OBJECTIVES We aim to clarify the role of ribosome biogenesis failure in senescence induction in X-DC since some studies in animal models have reported a decrease in ribosome biogenesis as a major role in the disease. METHODS Dyskerin was depleted in normal human fibroblasts by expressing two DKC1 shRNAs. Common changes in gene expression profile between these dyskerin-depleted cells and X-DC fibroblasts were analyzed. RESULTS Dyskerin depletion induced early activation of the p53 pathway probably secondary to ribosome biogenesis failure. However, the p53 pathway in the fibroblasts from X-DC patients was activated only after an equivalent number of passes to AD-DC fibroblasts, in which telomere attrition in each division rendered shorter telomeres than control fibroblasts. Indeed, no induction of DNA damage was observed in dyskerin-depleted fibroblasts in contrast to X-DC or AD-DC fibroblasts suggesting that DNA damage induced by telomere attrition is responsible for p53 activation in X-DC and AD-DC fibroblasts. Moreover, p53 depletion in senescent DC fibroblasts rescued their proliferative capacity and reverted the morphological changes produced after prolonged culture. CONCLUSIONS Our data indicate that ribosome biogenesis do not seem to play an important role in dyskeratosis congenita, conversely increasing DNA damage and activation of p53 pathway triggered by telomere shortening is the main activator of cell senescence.
Collapse
Affiliation(s)
- J Carrillo
- Instituto de Investigaciones Biomédicas de Madrid CSIC/UAM, IDIPaz (Biomarkers and Experimental Therapeutics Group), C/Arturo Duperier, 4, 28029, Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Hartwig FP, Collares T. Telomere dysfunction and tumor suppression responses in dyskeratosis congenita: balancing cancer and tissue renewal impairment. Ageing Res Rev 2013; 12:642-52. [PMID: 23541441 DOI: 10.1016/j.arr.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023]
Abstract
Dyskeratosis congenita (DC) encompasses a large spectrum of diseases and clinical manifestations generally related to premature aging, including bone marrow failure and cancer predisposition. The major risk factor for DC is to carry germline telomere-related mutations - in telomerase or telomere shelterin genes - which results in premature telomere dysfunction, thus increasing the risk of premature aging impairments. Despite the advances that have been accomplished in DC research, the molecular aspects underlying the phenotypic variability of the disease remain poorly understood. Here different aspects of telomere biology, concerning adult stem cells senescence, tumor suppression and cancer are considered in the context of DC, resulting in two translational models: late onset of DC symptoms in telomere-related mutations carriers is a potential indicator of increased cancer risk and differences in tumor suppression capacities among the genetic subgroups are (at least partial) causes of different clinical manifestations of the disease. The limitations of both models are presented, and further experiments for their validation, as well as clinical implications, are discussed.
Collapse
|
35
|
Mialou V, Leblanc T, Peffault de Latour R, Dalle JH, Socié G. [Dyskeratosis congenita: an update]. Arch Pediatr 2013; 20:299-306. [PMID: 23352883 DOI: 10.1016/j.arcped.2012.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/16/2012] [Accepted: 12/15/2012] [Indexed: 10/26/2022]
Abstract
Dyskeratosis congenita is a rare inherited bone marrow failure characterized by excessively short telomeres in highly proliferative tissues. These abnormalities are due to disturbance of the telomere maintenance machinery. The clinical presentation is characterized by skin pigmentation, nail dystrophy, and mucosal leukoplakia. All these mucocutaneous features are rare in childhood: they usually appear between 5 and 10 years of age. In young children, the initial presentation can associate bone marrow failure and neurological or ocular problems: Hoyeraal-Hreidarsson and Revesz syndromes, respectively. Clinical progression of the disease can lead to aplastic anemia (86% of all patients) and to pulmonary or hepatic complications. These patients also have an increased risk of cancer. Diagnosis is often suspected on bone marrow failure with no clinical or biological abnormalities compatible with Fanconi anemia diagnosis. The telomere length study can be helpful for diagnosis in case of aplastic anemia in children before studying gene mutations. Until now, 6 genes (DKC1, TERT, TERC, NOLA2, NOLA3, TINF2) have been identified in dyskeratosis congenita. Transmission of the disease can be autosomal recessive, autosomal dominant, or X-linked. In half of the cases, the genetic abnormality is unknown. Treatment of DC has to be adapted to each patient, from symptomatic or androgenic treatment to hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- V Mialou
- Institut d'hématologie et oncologie pédiatrique (IHOP), 1, place Professeur-J.-Renaut, 69008 Lyon, France.
| | | | | | | | | |
Collapse
|
36
|
Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 2013; 14:69-82. [PMID: 23299958 DOI: 10.1038/nrm3505] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, are characterized by the presence of multiple repeats of a short DNA sequence. This telomeric DNA is protected from illicit repair by telomere-associated proteins, which in mammals form the shelterin complex. Replicative polymerases are unable to synthesize DNA at the extreme ends of chromosomes, but in unicellular eukaryotes such as yeast and in mammalian germ cells and stem cells, telomere length is maintained by a ribonucleoprotein enzyme known as telomerase. Recent work has provided insights into the mechanisms of telomerase recruitment to telomeres, highlighting the contribution of telomere-associated proteins, including TPP1 in humans, Ccq1 in Schizosaccharomyces pombe and Cdc13 and Ku70-Ku80 in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jayakrishnan Nandakumar
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309-0596, USA
| | | |
Collapse
|
37
|
Stout GJ, Blasco MA. Telomere Length and Telomerase Activity Impact the UV Sensitivity Syndrome Xeroderma Pigmentosum C. Cancer Res 2013; 73:1844-54. [DOI: 10.1158/0008-5472.can-12-3125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Carrillo J, Martínez P, Solera J, Moratilla C, González A, Manguán-García C, Aymerich M, Canal L, del Campo M, Dapena J, Escoda L, García-Sagredo J, Martín-Sala S, Rives S, Sevilla J, Sastre L, Perona R. High resolution melting analysis for the identification of novel mutations in DKC1 and TERT genes in patients with dyskeratosis congenita. Blood Cells Mol Dis 2012; 49:140-6. [DOI: 10.1016/j.bcmd.2012.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/23/2012] [Indexed: 12/27/2022]
|
39
|
Horos R, von Lindern M. Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. Br J Haematol 2012; 159:514-27. [DOI: 10.1111/bjh.12058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Aslan D, Akata RF, Holme H, Vulliamy T, Dokal I. Limbal stem cell deficiency in patients with inherited stem cell disorder of dyskeratosis congenita. Int Ophthalmol 2012; 32:615-22. [PMID: 22814958 DOI: 10.1007/s10792-012-9611-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/07/2012] [Indexed: 01/30/2023]
Abstract
The aim of this study is to present the limbal stem cell deficiency (LSCD) cases with features resembling dyskeratosis congenita (DC), a heritable disease of stem cells principally caused by telomerase deficiency. The clinical, laboratory and molecular findings of four cases are presented. A complete systemic examination was performed in a standardized manner for each patient. Laboratory measurements included investigations of the tests used for screening DC. All eight known disease-causing genes in DC (DKC1, TERC, TERT, NOP10, NHP2, TINF2, C16orf57, and TCAB1) were screened for mutations. The family members of the cases were also assessed, when possible. In all four patients, multisystem involvement was present, along with the disorder affecting corneal LSCs. The affected tissues were mainly the skin and its adnexa, the oral cavity and the hematopoietic system, which are rapidly renewing tissues, consistent with the presence of a stem cell disorder. Similarly affected cases were seen in different generations in families, suggesting an underlying inherited disorder. No mutation was detected in any of the known disease-causing genes in these patients. Based on the presented cases and with the contribution of the review of previously reported DC cases available, we suggest that DC is one of the inherited causes of LSCD and that those cases presenting with LSCD might represent a subgroup of DC caused by mutations in an as yet undefined gene.
Collapse
Affiliation(s)
- Deniz Aslan
- Section of Hematology, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Inherited bone marrow failure syndromes (IBMFS) are a diverse set of genetic disorders characterized by the inability of the bone marrow to produce sufficient circulating blood cells. The purpose of this review is to highlight novel findings in recent years and their impact on the understanding of IBMFS. RECENT FINDINGS Mutations in over 80 different genes have been associated with the development of bone marrow failure (BMF). The products of the genes mutated in IBMFS frequently participate in housekeeping pathways, which are important for cell growth and division rather than being specific for hematopoiesis. The common theme of these pathways, when disturbed, is the activation of p53, leading to cell cycle arrest, senescence, and cell death. With continued improvement in therapy for IBMFS, late complications, such as development of malignancies, are seen more frequently. This highlights the importance of understanding the affected pathways and their roles in cancer development. SUMMARY The recent advancement of our understanding of IBMFS has come largely through the identification of the genetic lesions responsible for disease and the investigations of their pathways. Applied in clinical practice, these findings make it possible to unambiguously identify mutation carriers even before the development of BMF and exclude or confirm a suspected clinical diagnosis for many of the more common IBMFS. The further characterization of the pathways leading to IBMFS is likely to reveal novel targets for screening tests, prognostic biomarkers, and improved and specific therapeutics.
Collapse
|
43
|
Houghtaling BR, Canudas S, Smith S. A role for sister telomere cohesion in telomere elongation by telomerase. Cell Cycle 2012; 11:19-25. [PMID: 22157096 DOI: 10.4161/cc.11.1.18633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC) a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View, and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.
Collapse
Affiliation(s)
- Benjamin R Houghtaling
- Molecular Pathogenesis Program and Department of Pathology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
44
|
Angrisani A, Turano M, Paparo L, Di Mauro C, Furia M. A new human dyskerin isoform with cytoplasmic localization. Biochim Biophys Acta Gen Subj 2011; 1810:1361-8. [DOI: 10.1016/j.bbagen.2011.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 10/18/2022]
|
45
|
Li S, Duan J, Li D, Ma S, Ye K. Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J 2011; 30:5010-20. [PMID: 22117216 DOI: 10.1038/emboj.2011.427] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Shq1 is a conserved protein required for the biogenesis of eukaryotic H/ACA ribonucleoproteins (RNPs), including human telomerase. We report the structure of the Shq1-specific domain alone and in complex with H/ACA RNP proteins Cbf5, Nop10 and Gar1. The Shq1-specific domain adopts a novel helical fold and primarily contacts the PUA domain and the otherwise disordered C-terminal extension (CTE) of Cbf5. The structure shows that dyskeratosis congenita mutations found in the CTE of human Cbf5 likely interfere with Shq1 binding. However, most mutations in the PUA domain are not located at the Shq1-binding surface and also have little effect on the yeast Cbf5-Shq1 interaction. Shq1 binds Cbf5 independently of the H/ACA RNP proteins Nop10, Gar1 and Nhp2 and the assembly factor Naf1, but shares an overlapping binding surface with H/ACA RNA. Shq1 point mutations that disrupt Cbf5 interaction suppress yeast growth particularly at elevated temperatures. Our results suggest that Shq1 functions as an assembly chaperone that protects the Cbf5 protein complexes from non-specific RNA binding and aggregation before assembly of H/ACA RNA.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
46
|
Abstract
Telomeres are coated by shelterin, a six-subunit complex that is required for protection and replication of chromosome ends. The central subunit TIN2, with binding sites to three subunits (TRF1, TRF2, and TPP1), is essential for stability and function of the complex. Here we show that TIN2 stability is regulated by the E3 ligase Siah2. We demonstrate that TIN2 binds to Siah2 and is ubiquitylated in vivo. We show using purified proteins that Siah2 acts as an E3 ligase to directly ubiquitylate TIN2 in vitro. Depletion of Siah2 led to stabilization of TIN2 protein, indicating that Siah2 regulates TIN2 protein levels in vivo. Overexpression of Siah2 in human cells led to loss of TIN2 at telomeres that was dependent on the presence of the catalytic RING domain of Siah2. In contrast to RNAi-mediated depletion of TIN2 that led to loss of TRF1 and TRF2 at telomeres, Siah2-mediated depletion of TIN2 allowed TRF1 and TRF2 to remain on telomeres, indicating a different fate for shelterin subunits when TIN2 is depleted posttranslationally. TPP1 was lost from telomeres, although its protein level was not reduced. We speculate that Siah2-mediated removal of TIN2 may allow dynamic remodeling of the shelterin complex and its associated factors during the cell cycle.
Collapse
|
47
|
Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS One 2011; 6:e24383. [PMID: 21931702 PMCID: PMC3172236 DOI: 10.1371/journal.pone.0024383] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/05/2011] [Indexed: 11/24/2022] Open
Abstract
The bone marrow failure syndrome dyskeratosis congenita (DC) has been considered to be a disorder of telomere maintenance in which disease features arise due to accelerated shortening of telomeres. By screening core components of the telomerase and shelterin complexes in patients with DC and related bone marrow failure syndromes we have identified 24 novel mutations: 11 in the RNA component of telomerase (TERC), 8 in the reverse transcriptase component (TERT), 4 in dyskerin (DKC1) and 1 in TRF1-interacting nuclear factor 2 (TINF2). This has prompted us to review these genetic subtypes in terms of telomere length, telomerase activity and clinical presentation among 194 genetically characterised index cases recruited onto the registry in London. While those with DKC1 and TINF2 mutations present at a younger age and have more disease features than those with TERC or TERT mutations, there is no difference in telomere length between these groups. There is no difference in the age of onset and numbers of disease features seen in those with TERC and TERT mutations despite the fact that the latter show higher levels of telomerase activity in vitro. The incidence of aplastic anaemia is greater in patients with TERC or TINF2 mutations compared to patients with DKC1 mutations, and cancer incidence is highest in patients with TERC mutations. These data are the first to provide robust comparisons between different genetic subtypes of telomerase and shelterin mutations (the “telomereopathies”) and clearly demonstrate that disease severity is not explained by telomere length alone.
Collapse
|
48
|
Canudas S, Houghtaling BR, Bhanot M, Sasa G, Savage SA, Bertuch AA, Smith S. A role for heterochromatin protein 1γ at human telomeres. Genes Dev 2011; 25:1807-19. [PMID: 21865325 DOI: 10.1101/gad.17325211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human telomere function is mediated by shelterin, a six-subunit complex that is required for telomere replication, protection, and cohesion. TIN2, the central component of shelterin, has binding sites to three subunits: TRF1, TRF2, and TPP1. Here we identify a fourth partner, heterochromatin protein 1γ (HP1γ), that binds to a conserved canonical HP1-binding motif, PXVXL, in the C-terminal domain of TIN2. We show that HP1γ localizes to telomeres in S phase, where it is required to establish/maintain cohesion. We further demonstrate that the HP1-binding site in TIN2 is required for sister telomere cohesion and can impact telomere length maintenance by telomerase. Remarkably, the PTVML HP1-binding site is embedded in the recently identified cluster of mutations in TIN2 that gives rise to dyskeratosis congenita (DC), an inherited bone marrow failure syndrome caused by defects in telomere maintenance. We show that DC-associated mutations in TIN2 abrogate binding to HP1γ and that DC patient cells are defective in sister telomere cohesion. Our data indicate a novel requirement for HP1γ in the establishment/maintenance of cohesion at human telomeres and, furthermore, may provide insight into the mechanism of pathogenesis in TIN2-mediated DC.
Collapse
Affiliation(s)
- Silvia Canudas
- Molecular Pathogenesis Program, Department of Pathology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Strong MA, Vidal-Cardenas SL, Karim B, Yu H, Guo N, Greider CW. Phenotypes in mTERT⁺/⁻ and mTERT⁻/⁻ mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol Cell Biol 2011; 31:2369-79. [PMID: 21464209 PMCID: PMC3133422 DOI: 10.1128/mcb.05312-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 02/01/2023] Open
Abstract
Telomerase is essential for telomere length maintenance. Mutations in either of the two core components of telomerase, telomerase RNA (TR) or the catalytic protein component telomerase reverse transcriptase (TERT), cause the genetic disorders dyskeratosis congenita, pulmonary fibrosis, and other degenerative diseases. Overexpression of the TERT protein has been reported to have telomere length-independent roles, including regulation of the Wnt signaling pathway. To examine the phenotypes of TERT haploinsufficiency and determine whether loss of function of TERT has effects other than those associated with telomere shortening, we characterized both mTERT⁺/⁻ and mTERT⁻/⁻ mice on the CAST/EiJ genetic background. Phenotypic analysis showed a loss of tissue renewal capacity with progressive breeding of heterozygous mice that was indistinguishable from that of mTR-deficient mice. mTERT⁻/⁻ mice, from heterozygous mTERT⁺/⁻ mouse crosses, were born at the expected Mendelian ratio (26.5%; n = 1,080 pups), indicating no embryonic lethality of this genotype. We looked for, and failed to find, hallmarks of Wnt deficiency in various adult and embryonic tissues, including those of the lungs, kidneys, brain, and skeleton. Finally, mTERT⁻/⁻ cells showed wild-type levels of Wnt signaling in vitro. Thus, while TERT overexpression in some settings may activate the Wnt pathway, loss of function in a physiological setting has no apparent effects on Wnt signaling. Our results indicate that both TERT and TR are haploinsufficient and that their deficiency leads to telomere shortening, which limits tissue renewal. Our studies imply that hypomorphic loss-of-function alleles of hTERT and hTR should cause a similar disease spectrum in humans.
Collapse
Affiliation(s)
| | | | - Baktiar Karim
- Department of Molecular & Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huimin Yu
- Department of Molecular Biology & Genetics
| | - Nini Guo
- Department of Molecular Biology & Genetics
| | | |
Collapse
|
50
|
Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: dyskeratosis congenita. Eur J Hum Genet 2011; 19:ejhg201190. [PMID: 21610750 DOI: 10.1038/ejhg.2011.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Inderjeet Dokal
- Centre for Paediatrics, Blizard Institute for Cell and Molecular Science, Barts and The London, 4 Newark Street, Whitechapel, London, UK.
| | | | | | | |
Collapse
|