1
|
Xu Z, Hu H, Fang D, Wang J, Zhao K. The deubiquitinase USP38 promotes cell proliferation through stabilizing c-Myc. Int J Biochem Cell Biol 2021; 137:106023. [PMID: 34102342 DOI: 10.1016/j.biocel.2021.106023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022]
Abstract
The oncoprotein c-Myc is a master transcription factor that regulates the expression of a large number of genes involved in cell cycle, cell growth, and cell metabolism. Hence, it is important to keep the level of c-Myc under control. There are many proteins responsible for the degradation of c-Myc. However, the deubiquitinase-mediated stabilization of c-Myc remains less well understood. In this study, we found that USP38, an ubiquitin-specific protease, regulates the levels and function of c-Myc. USP38 can inhibit the polyubiquitination of c-Myc, thereby increasing c-Myc stability. Functionally, USP38 is able to promote cell proliferation via a c-Myc dependent manner. Mechanistically, USP38 physically interacts with FBW7α and abolishes FBW7α-mediated degradation of c-Myc. Furthermore, USP38 can restore the inhibitory effect of FBW7α on proliferation. Taken together, our study uncovers a novel role for USP38 in the regulation of c-Myc abundance and stability.
Collapse
Affiliation(s)
- Zhijun Xu
- Department of Respiration and Critical Care Medicine, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Hao Hu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Debao Fang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Jiong Wang
- Department of Respiration and Critical Care Medicine, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Kailiang Zhao
- Department of Cancer Chemotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China; CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
2
|
Placental Expression of NEMO Protein in Normal Pregnancy and Preeclampsia. DISEASE MARKERS 2019; 2019:8418379. [PMID: 30723530 PMCID: PMC6339720 DOI: 10.1155/2019/8418379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/24/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Background Preeclamptic pregnancies often present an intensified inflammatory state associated with the nuclear activity of NFκB. NEMO is an essential regulator of nuclear factor kappa B (NFκB) in cytoplasmic and nuclear cellular compartments. The aim of the present study is to examine the level and localization of the NEMO protein in preeclamptic and nonpreeclamptic placentas. Methods The study includes 97 preeclamptic cases and 88 controls. NEMO distribution was analyzed immunohistochemically. Its localization in the nuclear and cytoplasmic fractions, as well as in total homogenates of placental samples, was studied by western blot and ELISA. Results The western blot and ELISA results indicate a significant difference in NEMO concentration in the total and nuclear fractions between preeclamptic and control samples (p < 0.01 and p < 0.001, respectively). In the cytoplasmic complement, similar levels of NEMO were found in preeclamptic and control placentas. In addition, immunohistochemical staining revealed that the NEMO protein is mainly localized in the syncytiotrophoblast layer, with controls demonstrating a stronger reaction with NEMO antibodies. This study also shows that the placental level of NEMO depends on the sex of the fetus. Conclusions The depletion of the NEMO protein in the cellular compartments of placental samples may activate one of the molecular pathways influencing the development of preeclampsia, especially in pregnancies with a female fetus. A reduction of the NEMO protein in the nuclear fraction of preeclamptic placentas may intensify the inflammatory state characteristic for preeclampsia and increase the level of apoptosis and necrosis within preeclamptic placentas.
Collapse
|
3
|
Kravchick DO, Karpova A, Hrdinka M, Lopez-Rojas J, Iacobas S, Carbonell AU, Iacobas DA, Kreutz MR, Jordan BA. Synaptonuclear messenger PRR7 inhibits c-Jun ubiquitination and regulates NMDA-mediated excitotoxicity. EMBO J 2016; 35:1923-34. [PMID: 27458189 DOI: 10.15252/embj.201593070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity.
Collapse
Affiliation(s)
- Dana O Kravchick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Matous Hrdinka
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dumitru A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Sakowicz A, Hejduk P, Pietrucha T, Nowakowska M, Płuciennik E, Pospiech K, Gach A, Rybak-Krzyszkowska M, Sakowicz B, Kaminski M, Krasomski G, Biesiada L. Finding NEMO in preeclampsia. Am J Obstet Gynecol 2016; 214:538.e1-538.e7. [PMID: 26571191 DOI: 10.1016/j.ajog.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/24/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mechanism of preeclampsia and its way of inheritance are still a mystery. Biochemical and immunochemical studies reveal a substantial increase in tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 concentrations in the blood of women with preeclampsia. The level of these factors is regulated by nuclear facxtor-kappa B, whose activation in a classical pathway requires inhibitory kappa B kinase gamma (known as NEMO or IKBKG). Moreover, NEMO can schedule between cytoplasma and the nucleus. In the nucleus, IKBKG interacts with other proteins, and thus, it is implicated in the regulation of different gene expressions, which are related to cell cycle progression, proliferation, differentiation, and apoptosis. OBJECTIVE This is the first study investigating the association between the level of NEMO gene expression and the presence of preeclampsia. We tested the hypothesis that the simultaneous increase in NEMO gene expression both in the mother and her fetus may be responsible for the preeclampsia development. Moreover, the relationships between clinical risk factors of preeclampsia and the levels of NEMO gene expression in blood, umbilical cord blood, and placentas were investigated. STUDY DESIGN A total of 91 women (43 preeclamptic women and 48 controls) and their children were examined. Real-time reverse transcription-polymerase chain reaction was used to assess the amount total NEMO messenger ribonucleic acid (mRNA) content and the mRNA level of each NEMO transcript from exons 1A, 1B, and 1C in maternal blood, umbilical cord blood, and placentas. Univariate analyses and correlation tests were performed to examine the association between NEMO gene expression and preeclampsia. RESULTS Newborn weight and height, maternal platelet number, and gestational age (week of delivery) were lower in the group of women with preeclampsia than controls. NEMO gene expression level was found to be almost 7 times higher in the group of women with preeclampsia than healthy controls. The correlation analysis found that a simultaneous increase in the expression level of total NEMO mRNA in maternal blood and the mRNA for total NEMO (Rs = 0.311, P < .05), transcripts 1A (Rs = 0.463, P < .01), 1B (Rs = 0.454, P < .01), and 1C (Rs = 0.563, P < .001) in fetal blood was observed in preeclamptic pregnancies. In addition, the mRNA levels for total NEMO and transcripts 1A, 1B, and 1C were lower in placentas derived from pregnancies complicated by preeclampsia. CONCLUSION Simultaneous increase of NEMO gene expression in maternal and fetal blood seems to be relevant for preeclampsia development. The results of our study also suggest that a decreased NEMO gene expression level in preeclamptic placentas may be the main reason for their intensified apoptosis.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Poland.
| | - Paulina Hejduk
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Poland
| | | | | | - Karolina Pospiech
- Department of Molecular Cancerogenesis, Medical University of Lodz, Poland
| | - Agnieszka Gach
- Department of Genetic, Polish Mother's Memorial Hospital-Research Institute in Lodz, Poland
| | | | - Bartosz Sakowicz
- Department of Microelectronics and Computer Science, Lodz University of Technology, Poland
| | - Marek Kaminski
- Department of Microelectronics and Computer Science, Lodz University of Technology, Poland
| | - Grzegorz Krasomski
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Poland
| | - Lidia Biesiada
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Poland
| |
Collapse
|
5
|
Nowicka AM, Häuselmann I, Borsig L, Bolduan S, Schindler M, Schraml P, Heikenwalder M, Moch H. A novel pVHL-independent but NEMO-driven pathway in renal cancer promotes HIF stabilization. Oncogene 2015; 35:3125-38. [PMID: 26500060 DOI: 10.1038/onc.2015.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/22/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Abstract
Activation of hypoxia-inducible factor (HIF) is due to loss of von Hippel-Lindau protein (pVHL) function in most clear cell renal cell carcinomas (ccRCCs). Here we describe a novel pVHL-independent mechanism of HIF regulation and identify nuclear factor (NF)-κB essential modulator (NEMO) as a hitherto unknown oncogenic factor influencing human ccRCC progression. Over 60% of human ccRCCs (n=157) have negative or weak NEMO protein expression by immunohistochemistry. Moderate/strong NEMO protein expression is more frequent in VHL wild-type ccRCCs. We show that NEMO stabilizes HIFα via direct interaction and independently of NF-κB signaling in vitro. NEMO prolongs tumor cell survival via regulation of apoptosis and activation of epithelial-to-mesenchymal transition, facilitating tumor metastasis. Our findings suggest that NEMO-driven HIF activation is involved in progression of ccRCC. Therefore, NEMO may represent a clinically relevant link between NF-κB and the VHL/HIF pathways. Targeting NEMO with specific inhibitors in patients with metastatic ccRCC could be a novel treatment approach in patients with ccRCC expressing functional pVHL.
Collapse
Affiliation(s)
- A M Nowicka
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - I Häuselmann
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - L Borsig
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - S Bolduan
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - M Schindler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - P Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - M Heikenwalder
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.,Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - H Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Liu N, Li P, Zang S, Liu Q, Ma D, Sun X, Ji C. Novel agent nitidine chloride induces erythroid differentiation and apoptosis in CML cells through c-Myc-miRNAs axis. PLoS One 2015; 10:e0116880. [PMID: 25647305 PMCID: PMC4315404 DOI: 10.1371/journal.pone.0116880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
8
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
9
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|