1
|
Tsoraev GV, Bukhanko A, Budylin GS, Shirshin EA, Slonimskiy YB, Sluchanko NN, Kloz M, Cherepanov DA, Shakina YV, Ge B, Moldenhauer M, Friedrich T, Golub M, Pieper J, Maksimov EG, Rubin AB. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 1: Time-Resolved Spectroscopy. J Phys Chem B 2023; 127:1890-1900. [PMID: 36799909 DOI: 10.1021/acs.jpcb.2c07189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.
Collapse
Affiliation(s)
- Georgy V Tsoraev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Antonina Bukhanko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gleb S Budylin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.,Laboratory of Clinical Biophotonics, Scientific and Technological Biomedical Park, Sechenov University, 119435 Moscow, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Dolní Břežany, 252 41 Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | | | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
2
|
Niziński S, Schlichting I, Colletier JP, Kirilovsky D, Burdzinski G, Sliwa M. Is orange carotenoid protein photoactivation a single-photon process? BIOPHYSICAL REPORTS 2022; 2:100072. [PMID: 36425326 PMCID: PMC9680785 DOI: 10.1016/j.bpr.2022.100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
In all published photoactivation mechanisms of orange carotenoid protein (OCP), absorption of a single photon by the orange dark state starts a cascade of red-shifted OCP ground-state intermediates that subsequently decay within hundreds of milliseconds, resulting in the formation of the final red form OCPR, which is the biologically active form that plays a key role in cyanobacteria photoprotection. A major challenge in deducing the photoactivation mechanism is to create a uniform description explaining both single-pulse excitation experiments, involving single-photon absorption, and continuous light irradiation experiments, where the red-shifted OCP intermediate species may undergo re-excitation. We thus investigated photoactivation of Synechocystis OCP using stationary irradiation light with a biologically relevant photon flux density coupled with nanosecond laser pulse excitation. The kinetics of photoactivation upon continuous and nanosecond pulse irradiation light show that the OCPR formation quantum yield increases with photon flux density; thus, a simple single-photon model cannot describe the data recorded for OCP in vitro. The results strongly suggest a consecutive absorption of two photons involving a red intermediate with ≈100 millisecond lifetime. This intermediate is required in the photoactivation mechanism and formation of the red active form OCPR.
Collapse
Affiliation(s)
- Stanisław Niziński
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznan, Poland
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | | | - Diana Kirilovsky
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gotard Burdzinski
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| |
Collapse
|
3
|
Kudrinskiy A, Zherebin P, Gusev A, Shapoval O, Pyee J, Lisichkin G, Krutyakov Y. New Relevant Descriptor of Linear QNAR Models for Toxicity Assessment of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1459. [PMID: 32722446 PMCID: PMC7466614 DOI: 10.3390/nano10081459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
The use of silver nanoparticles (NPs) in medical, industrial and agricultural fields is becoming more widespread every year. This leads to an increasing number of experimental toxicological and microbiological studies of silver NPs aimed at establishing the risk-benefit ratio for their application. The following key parameters affecting the biological activity of silver dispersions are traditionally taken into consideration: mean diameter of NPs, surface potential of NPs and equilibrium concentration of Ag+. These characteristics are mainly predetermined by the chemical nature of the capping agent used for stabilization. However, the extent to which they influence the biological activity and the toxicity of silver NPs varies greatly. In this work, dispersions of silver NPs stabilized with a wide array of substances of different chemical nature were used for quantitative evaluation of whether the various measurable properties of silver NPs fit as descriptors of linear QNAR (quantitative nanostructure-activity relationship) models for silver NP toxicity evaluation with respect to a model eukaryotic microorganism-Saccharomyces cerevisiae yeast cells. It was shown that among the factors that determine silver NP toxicity, the charge of particles, their colloidal stability and the ability to generate Ag+ ions carry more importance than the descriptors related to the particle size. A significant synergistic effect between the ζ-potential and the colloidal stability of silver NPs on their toxicity was also discovered. Following this, a new descriptor has been proposed for the integral characterization of the silver dispersion colloidal stability. According to the obtained data, it can be considered applicable for building QNAR models of higher efficacy. The validity testing of the proposed model for theoretical prediction of silver NP toxicity using a wide range of living organisms has shown that this new descriptor correlates with toxicity much better compared to most traditionally used descriptors. Consequently, it seems promising in terms of being used not only in situations involving the rather narrow array of the objects tested, but also for the construction of silver NP toxicity models with respect to other living organisms.
Collapse
Affiliation(s)
- Alexey Kudrinskiy
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills 1-3, 119991 Moscow, Russia; (A.K.); (P.Z.); (G.L.)
- National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, 123182 Moscow, Russia
| | - Pavel Zherebin
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills 1-3, 119991 Moscow, Russia; (A.K.); (P.Z.); (G.L.)
| | - Alexander Gusev
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, str. Moskovskaya 10, 392000 Tambov, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Olga Shapoval
- Pryanishnikov Russian Scientific Research Institute of Agrochemistry, str. Pryanishnikova 31a, 127550 Moscow, Russia;
| | - Jaeho Pyee
- Department of Molecular Biology, Dankook University, 119 Dandae str., Cheonan 31116, Korea;
| | - Georgy Lisichkin
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills 1-3, 119991 Moscow, Russia; (A.K.); (P.Z.); (G.L.)
| | - Yurii Krutyakov
- Department of Chemistry, Lomonosov Moscow State University, Lenin Hills 1-3, 119991 Moscow, Russia; (A.K.); (P.Z.); (G.L.)
- National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, 123182 Moscow, Russia
| |
Collapse
|
4
|
Remelli W, Santabarbara S. Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis sp. PPC6803: Influence on the estimation of Photosystem II maximal quantum efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1207-1222. [PMID: 30297025 DOI: 10.1016/j.bbabio.2018.09.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
The fluorescence emission spectrum of Synechocystis sp. PPC6803 cells, at room temperature, displays: i) significant bandshape variations when collected under open (F0) and closed (FM) Photosystem II reaction centre conditions; ii) a marked dependence on the excitation wavelength both under F0 and FM conditions, due to the enhancement of phycobilisomes (PBS) emission upon their direct excitation. As a consequence: iii) the ratio of the variable and maximal fluorescence (FV/FM), that is a commonly employed indicator of the maximal photochemical quantum efficiency of PSII (Φpc, PSII), displays a significant dependency on both the excitation and the emission (detection) wavelength; iv) the FV/FM excitation/emission wavelength dependency is due, primarily, to the overlap of PSII emission with that of supercomplexes showing negligible changes in quantum yield upon trap closure, i.e. PSI and a PBS fraction which is incapable to transfer the excitation energy efficiently to core complexes. v) The contribution to the cellular emission and the relative absorption-cross section of PSII, PSI and uncoupled PBS are extracted using a spectral decomposition strategy. It is concluded that vi) Φpc, PSII is generally underestimated from the FV/FM measurements in this organism and, the degree of the estimation bias, which can exceed 50%, depends on the measurement conditions. Spectral modelling based on the decomposed emission/cross-section profiles were extended to other processes typically monitored from steady-state fluorescence measurements, in the presence of an actinic illumination, in particular non-photochemical quenching. It is suggested that vii) the quenching extent is generally underestimated in analogy to FV/FM but that viii) the location of quenching sites can be discriminated based on the combined excitation/emission spectral analysis.
Collapse
Affiliation(s)
- William Remelli
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, 20133 Milano, Italy.
| |
Collapse
|
5
|
Kirilovsky D, Kerfeld CA. Cyanobacterial photoprotection by the orange carotenoid protein. NATURE PLANTS 2016; 2:16180. [PMID: 27909300 DOI: 10.1038/nplants.2016.180] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, the production of dangerous oxygen species is stimulated under high irradiance. To cope with this stress, these organisms have evolved photoprotective mechanisms. One type of mechanism functions to decrease the energy arriving at the photochemical centres by increasing thermal dissipation at the level of antennae. In cyanobacteria, the trigger for this mechanism is the photoactivation of a soluble carotenoid protein, the orange carotenoid protein (OCP), which is a structurally and functionally modular protein. The inactive orange form (OCPo) is compact and globular, with the carotenoid spanning the effector and the regulatory domains. In the active red form (OCPr), the two domains are completely separated and the carotenoid has translocated entirely into the effector domain. The activated OCPr interacts with the phycobilisome (PBS), the cyanobacterial antenna, and induces excitation-energy quenching. A second protein, the fluorescence recovery protein (FRP), dislodges the active OCPr from the PBSs and accelerates its conversion to the inactive OCP.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Berkeley Synthetic Biology Institute, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Maksimov EG, Klementiev KE, Shirshin EA, Tsoraev GV, Elanskaya IV, Paschenko VZ. Features of temporal behavior of fluorescence recovery in Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2015; 125:167-178. [PMID: 25800518 DOI: 10.1007/s11120-015-0124-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Under high photon flux density of solar radiation, the photosynthetic apparatus can be damaged. To prevent this photodestruction, cyanobacteria developed special mechanisms of non-photochemical quenching (NPQ) of excitation energy in phycobilisomes. In Synechocystis, NPQ is triggered by the orange carotenoid protein (OCP), which is sensitive to blue-green illumination allowing it to bind to the phycobilisome reducing the flow of energy to the photosystems. Consequent decoupling of OCP and recovery of phycobilisome fluorescence in vivo is controlled by the so called fluorescence recovery protein (FRP). In this work, the role of the phycobilisome core components, apcD and apcF, in non-photochemical quenching and subsequent fluorescence recovery in the phycobilisomes of the cyanobacterium Synechocystis sp. PCC6803 has been investigated. Using a single photon counting technique, we have registered fluorescence decay spectra with picosecond time resolution during fluorescence recovery. In order to estimate the activation energy for the photocycle, spectroscopic studies in dependency on the temperature from 5 to 45 °C have been performed. It was found that fluorescence quenching and recovery were strongly temperature dependent for all strains exhibiting characteristic non-linear time courses. The rise of the fluorescence intensity during fluorescence recovery after NPQ can be completely described by the increase of the phycobilisome core fluorescence lifetime. It was shown that fluorescence recovery of apcD- and apcF-deficient mutants is characterized by a significantly lower activation energy barrier compared to wild type. This phenomenon indicates that apcD and apcF gene products may be required for proper interaction of FRP and OCP coupled to the phycobilisome core. In addition, we found that the rate of fluorescence recovery decreases with an increase of the non-photochemical quenching amplitude, probably due to depletion of substrate for the enzymatic reaction catalyzed by FRP.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
7
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
8
|
Plohnke N, Seidel T, Kahmann U, Rögner M, Schneider D, Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol Cell Proteomics 2015; 14:572-84. [PMID: 25561504 PMCID: PMC4349978 DOI: 10.1074/mcp.m114.042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.
Collapse
Affiliation(s)
- Nicole Plohnke
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias Seidel
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Uwe Kahmann
- ¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dirk Schneider
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany;
| |
Collapse
|
9
|
Zhao W, Xie J, Xu X, Zhao J. State transitions and fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 in response to changes in light quality and intensity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 142:169-77. [PMID: 25543550 DOI: 10.1016/j.jphotobiol.2014.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
Abstract
State transition and non-photochemical fluorescence quenching in cyanobacteria are short-term adaptations of photosynthetic apparatus to changes in light quality and intensity, however, the kinetic details and relationship are still not clear. In this work, time-dependent 77K fluorescence spectra were monitored for cyanobacterium Synechocystis PCC 6803 cells under blue, orange and blue-green light in a series of intensities. The characteristic fluorescence signals indicated state transition taking place exclusively under 430-450 or 580-600nm light or 480-550nm light at the intensities ⩽150μEm(-2)s(-1) to achieve a conserved level with variable rate constant. Under 480-500nm or 530-550nm light at the intensities ⩾160μEm(-2)s(-1), state transition took place at first but stopped as soon as the fluorescence quenching appeared. The dependence of appearance, induction period, level and rate constant for the quenching on light intensity suggests that a critical concentration of photo-activated OCPs is necessary and may be achieved by a dynamic equilibrium between the activation and deactivation under light.
Collapse
Affiliation(s)
- Wenfeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, P.O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing 100190, PR China
| | - Jie Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, P.O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing 100190, PR China.
| | - Xiuling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, P.O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing 100190, PR China
| | - Jingquan Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, P.O. Box 101, Institute of Chemistry, Chinese Academy of Sciences, No. 2, 1st North Street, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
10
|
Reichardt TA, Collins AM, McBride RC, Behnke CA, Timlin JA. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria. APPLIED OPTICS 2014; 53:F31-F45. [PMID: 25321139 DOI: 10.1364/ao.53.000f31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.
Collapse
|
11
|
Kuzminov FI, Bolychevtseva YV, Elanskaya IV, Karapetyan NV. Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:153-60. [PMID: 24727864 DOI: 10.1016/j.jphotobiol.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Long-wavelength allophycocyanin (APC) subunits in cyanobacteria (APCD, APCE, and APCF) are required for phycobilisome (PBS) assembly, stability, and energy transfer to photosystems. Here we studied fluorescence properties of PBS in vivo, using Synechocystis PCC 6803 mutant cells deficient in both photosystems and/or long-wavelength APC subunits. At room temperature, an absence of APCD and APCF subunits resulted in ∼2-fold decrease of long-wavelength APC (APC680) fluorescence. In 77K fluorescence spectra, we observed only a slight shift of long-wavelength emission. However, 77K fluorescence of a PSI/PSII/APCF-less mutant was also characterized by increased emission from short-wavelength APC, which suggested the importance of this subunit in energy transfer from APC660 to APC680. Under blue-green actinic light, all mutants showed significant non-photochemical fluorescence quenching of up to 80% of the initial dark fluorescence level. Based on the mutants' quenching spectra, we determined quenching to originate from the pool of short-wavelength APC, while the spectral data alone was not sufficient to make unambiguous conclusion on the involvement of long-wavelength APC in non-photochemical quenching. Using a model of quenching center formation, we determined interaction rates between PBS and orange carotenoid protein (OCP) in vivo. Absence of APCD or APCF subunits had no effect on the rates of quenching center formation confirming the data obtained for isolated OCP-PBS complexes. Thus, although APCD and APCF subunits were required for energy transfer in PBS in vivo, their absence did not affect rates of OCP-PBS binding.
Collapse
Affiliation(s)
- F I Kuzminov
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | - I V Elanskaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - N V Karapetyan
- A.N. Bach Institute of Biochemistry RAS, 119071 Moscow, Russia
| |
Collapse
|
12
|
Maksimov EG, Schmitt FJ, Shirshin EA, Svirin MD, Elanskaya IV, Friedrich T, Fadeev VV, Paschenko VZ, Rubin AB. The time course of non-photochemical quenching in phycobilisomes of Synechocystis sp. PCC6803 as revealed by picosecond time-resolved fluorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1540-7. [PMID: 24463052 DOI: 10.1016/j.bbabio.2014.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/25/2013] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Abstract
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures - from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmolphotonsm⁻²s⁻¹. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- E G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - F-J Schmitt
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - E A Shirshin
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - M D Svirin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - I V Elanskaya
- Department of Genetics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - T Friedrich
- Institute of Chemistry, Biophysical Chemistry, TU Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - V V Fadeev
- Department of Quantum Electronics, Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
13
|
Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem Photobiol Sci 2014; 12:1135-43. [PMID: 23396391 DOI: 10.1039/c3pp25406b] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the Orange Carotenoid Protein (OCP) which is the first photoactive protein identified containing a carotenoid as the photoresponsive chromophore. This protein is essential for the triggering of a photoprotective mechanism in cyanobacteria which decreases the excess absorbed energy arriving at the photosynthetic reaction centers by increasing thermal dissipation at the level of the phycobilisomes, the cyanobacterial antenna. Blue-green light causes structural changes within the carotenoid and the protein, converting the orange inactive form into a red active form. The activated red form interacts with the phycobilisome and induces the decrease of phycobilisome fluorescence emission and of the energy arriving to the photosynthetic reaction centers. The OCP is the light sensor, the signal propagator and the energy quencher. A second protein, the Fluorescence Recovery Protein (FRP), is needed to detach the red OCP from the phycobilisome and its reversion to the inactive orange form. In the last decade, in vivo and in vitro mechanistic studies combined with structural and genomic data resulted in both the discovery and a detailed picture of the function of the OCP and OCP-mediated photoprotection. Recent structural and functional results are emphasized and important previous results will be reviewed. Similarities to other blue-light responsive proteins will be discussed.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, 91191 Gif sur Yvette, France.
| | | |
Collapse
|
14
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 125:137-45. [DOI: 10.1016/j.jphotobiol.2013.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 11/21/2022]
|
16
|
Tian L, van Stokkum IHM, Koehorst RBM, van Amerongen H. Light Harvesting and Blue-Green Light Induced Non-Photochemical Quenching in Two Different C-Phycocyanin Mutants of Synechocystis PCC 6803. J Phys Chem B 2012; 117:11000-6. [DOI: 10.1021/jp309570u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Ivo H. M. van Stokkum
- Biophysics
Group, Department
of Physics and Astronomy, Faculty of Sciences, VU University, DeBoelelaan1081, 1081 HV Amsterdam, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen,
The Netherlands
| |
Collapse
|
17
|
Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1012-21. [DOI: 10.1016/j.bbabio.2012.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 11/21/2022]
|
18
|
Tian L, Gwizdala M, van Stokkum IHM, Koehorst RBM, Kirilovsky D, van Amerongen H. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys J 2012; 102:1692-700. [PMID: 22500770 DOI: 10.1016/j.bpj.2012.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022] Open
Abstract
In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting phycobilisomes (PBs) to protect the photosynthetic system against photodamage. This process requires the binding of the red active form of the Orange Carotenoid Protein (OCP(r)), which can effectively quench the excited state of one of the allophycocyanin bilins. Recently, an in vitro reconstitution system was developed using isolated OCP and isolated PBs from Synechocystis PCC 6803. Here we have used spectrally resolved picosecond fluorescence to study wild-type and two mutated PBs. The results demonstrate that the quenching for all types of PBs takes place on an allophycocyanin bilin emitting at 660 nm (APC(Q)(660)) with a molecular quenching rate that is faster than (1 ps)(-1). Moreover, it is concluded that both the mechanism and the site of quenching are the same in vitro and in vivo. Thus, utilization of the in vitro system should make it possible in the future to elucidate whether the quenching is caused by charge transfer between APC(Q)(660) and OCP or by excitation energy transfer from APC(Q)(660) to the S(1) state of the carotenoid--a distinction that is very hard, if not impossible, to make in vivo.
Collapse
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1436-45. [PMID: 22483736 DOI: 10.1016/j.bbabio.2012.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/28/2012] [Accepted: 03/21/2012] [Indexed: 11/21/2022]
Abstract
In cyanobacteria, the thermal dissipation of excess absorbed energy at the level of the phycobilisome (PBS)-antenna is triggered by absorption of strong blue-green light by the photoactive orange carotenoid protein (OCP). This process known as non-photochemical quenching, whose molecular mechanism remains in many respects unclear, is revealed in vivo as a decrease in phycobilisome fluorescence. In vitro reconstituted system on the interaction of the OCP and the PBS isolated from the cyanobacterium Synechocystis sp. PCC 6803 presents evidence that the OCP is not only a photosensor, but also an effecter that makes direct contacts with the PBS and causes dissipation of absorbed energy. To localize the site(s) of quenching, we have analyzed the role of chromophorylated polypeptides of the PBS using PBS-deficient mutants in conjunction with in vitro systems of assembled PBS and of isolated components of the PBS core. The results demonstrated that L(CM), the core-membrane linker protein and terminal emitter of the PBS, could act as the docking site for OCP in vitro. The ApcD and ApcF terminal emitters of the PBS core are not directly subjected to quenching. The data suggests that there could be close contact between the phycocyanobilin chromophore of L(CM) and the 3'-hydroxyechinenone chromophore present in OCP and that L(CM) could be involved in OCP-induced quenching. According to the reduced average life-time of the PBS-fluorescence and linear dependence of fluorescence intensity of the PBS on OCP concentration, the quenching has mostly dynamic character. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
20
|
Jallet D, Gwizdala M, Kirilovsky D. ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1418-27. [PMID: 22172739 DOI: 10.1016/j.bbabio.2011.11.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
In cyanobacteria, strong blue-green light induces a photoprotective mechanism involving an increase of energy thermal dissipation at the level of phycobilisome (PB), the cyanobacterial antenna. This leads to a decrease of the energy arriving to the reaction centers. The photoactive Orange Carotenoid Protein (OCP) has an essential role in this mechanism. The binding of the red photoactivated OCP to the core of the PB triggers energy and PB fluorescence quenching. The core of PBs is constituted of allophycocyanin trimers emitting at 660 or 680nm. ApcD, ApcF and ApcE are the responsible of the 680nm emission. In this work, the role of these terminal emitters in the photoprotective mechanism was studied. Single and double Synechocystis PCC 6803 mutants, in which the apcD or/and apcF genes were absent, were constructed. The Cys190 of ApcE which binds the phycocyanobilin was replaced by a Ser. The mutated ApcE attached an unusual chromophore emitting at 710nm. The activated OCP was able to induce the photoprotective mechanism in all the mutants. Moreover, in vitro reconstitution experiments showed similar amplitude and rates of fluorescence quenching. Our results demonstrated that ApcD, ApcF and ApcE are not required for the OCP-related fluorescence quenching and they strongly suggested that the site of quenching is one of the APC trimers emitting at 660nm. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Denis Jallet
- Institut de Biologie et Technologies de Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
21
|
A kinetic model of non-photochemical quenching in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1591-9. [DOI: 10.1016/j.bbabio.2011.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
|
22
|
Tian L, van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, van Amerongen H. Site, Rate, and Mechanism of Photoprotective Quenching in Cyanobacteria. J Am Chem Soc 2011; 133:18304-11. [DOI: 10.1021/ja206414m] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijin Tian
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Ivo H. M. van Stokkum
- Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, VU University, DeBoelelaan1081, 1081 HV Amsterdam, The Netherlands
| | - Rob B. M. Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Aniek Jongerius
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Diana Kirilovsky
- Commissariat à l’Energie Atomique, Institut de Biologie et Technologies de Saclay and Centre National de la Recherche Scientifique, 91191 Gif sur Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| |
Collapse
|