1
|
Porfírio CTMN, Souza PFN, Ramos MV, Campos FAP, Freitas SF, Oliveira JPB, Furtado GP, Barbosa JSS, Frota TL, Nagano CS, Silva RGG, Hussain G, Freitas CDT. Serine carboxypeptidases from the carnivorous plant Nepenthes mirabilis: Partial characterization and heterologous expression. Int J Biol Macromol 2022; 198:77-86. [PMID: 34963626 DOI: 10.1016/j.ijbiomac.2021.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to partially characterize the three main serine carboxypeptidases (SCP3, SCP20, and SCP47) from Nepenthes mirabilis. Furthermore, one peptidase (SCP3) was chosen for further heterologous expression in Escherichia coli Shuffle®T7. SCP3 also was characterized in terms of its allergenic potential using bioinformatics tools. SCP3, SCP20, and SCP47 showed very similar 3D structures and mechanistic features to other plant serine peptidases belonging to clan SC and family S10. Although SCP3 was obtained in its soluble form, using 1% ethanol during induction with 0.5 mM IPTG at 16 °C for 18 h, it did not show proteolytic activity by zymography or in vitro analysis. SCP3 presented a few allergenic peptides and several cleavage sites for digestive enzymes. This work describes additional features of these enzymes, opening new perspectives for further studies for characterization and analysis of heterologous expression, as well as their potential biotechnological applications.
Collapse
Affiliation(s)
- Camila T M N Porfírio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Francisco A P Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Samuel F Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - João P B Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | | | - José S S Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Thalia L Frota
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rodolpho G G Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Ghulam Hussain
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| |
Collapse
|
2
|
Lajis AFB. Realm of Thermoalkaline Lipases in Bioprocess Commodities. J Lipids 2018; 2018:5659683. [PMID: 29666707 PMCID: PMC5832097 DOI: 10.1155/2018/5659683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
Collapse
Affiliation(s)
- Ahmad Firdaus B. Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
3
|
Barnabas L, Ashwin NMR, Kaverinathan K, Trentin AR, Pivato M, Sundar AR, Malathi P, Viswanathan R, Carletti P, Arrigoni G, Masi A, Agrawal GK, Rakwal R. In vitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum - The sugarcane smut fungus. Fungal Biol 2017; 121:199-211. [PMID: 28215348 DOI: 10.1016/j.funbio.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 02/08/2023]
Abstract
Sporisorium scitamineum, the sugarcane smut pathogen, relies predominantly on its secretome to successfully colonise its host, in accordance with other related smut fungi. Considering the significance of deciphering its secretome, we have examined alterations in the in vitro secretome of S. scitamineum in response to synthetic and sugarcane meristem tissue-amended growth media, so as to identify host signal responsive secretory proteins. Secretory proteins that were differentially abundant and exclusively secreted in response to host extract media were identified by two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF MS. Of the 16 differentially abundant and exclusively secreted proteins, nine proteins were identified. Among which, six were related to cell wall modification, morphogenesis, polysaccharide degradation, and carbohydrate metabolism. In planta gene expression profiling indicated that five in vitro secreted proteins were expressed in distinct patterns by S. scitamineum during different stages of infection with relatively higher expression at 1 day after inoculation, suggesting that these proteins could be aiding S. scitamineum at early time points in penetration and colonisation of sugarcane cells. The present study has provided insights into the alterations occurring in the secretome of S. scitamineum at in vitro conditions and has resulted in the identification of secretory proteins that are possibly associated with pathogenicity of the sugarcane smut fungus.
Collapse
Affiliation(s)
- Leonard Barnabas
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - N M R Ashwin
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Kalimuthu Kaverinathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Amalraj Ramesh Sundar
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India.
| | - Palaniyandi Malathi
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, 641 007 Coimbatore, India
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Giorgio Arrigoni
- Proteomics Center of Padova University, Via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Via dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, 44301 Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, 44301 Birgunj, Nepal; Faculty of Health and Sport Sciences & Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 305-8571 Ibaraki, Japan
| |
Collapse
|
4
|
Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation. J Ind Microbiol Biotechnol 2016; 43:1467-80. [PMID: 27535142 DOI: 10.1007/s10295-016-1820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/30/2016] [Indexed: 01/12/2023]
Abstract
Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.
Collapse
|
5
|
Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases. PLoS One 2016; 11:e0149851. [PMID: 26934700 PMCID: PMC4774917 DOI: 10.1371/journal.pone.0149851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/06/2016] [Indexed: 12/01/2022] Open
Abstract
Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.
Collapse
|
6
|
Rabbani G, Ahmad E, Khan MV, Ashraf MT, Bhat R, Khan RH. Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): in relation to pH, chemical and thermal denaturation. RSC Adv 2015. [DOI: 10.1039/c4ra17093h] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of pH on the conformational behavior of Candida antartica lipase B (CaLB) has been monitored by spectroscopic and calorimetric studies.
Collapse
Affiliation(s)
- Gulam Rabbani
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| | - Ejaz Ahmad
- Central European Institute of Technology (CEITEC), Masaryk University
- CZ-62500 Brno
- Czech Republic
| | - Mohsin Vahid Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| | | | - Rajiv Bhat
- School of Biotechnology
- Jawaharlal Nehru University
- New-Delhi 110067
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202 002
- India
| |
Collapse
|
7
|
Procópio L, Macrae A, van Elsas JD, Seldin L. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications. Antonie van Leeuwenhoek 2012; 103:635-46. [PMID: 23142860 DOI: 10.1007/s10482-012-9847-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/β-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/β-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C-C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6 Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.
Collapse
Affiliation(s)
- Luciano Procópio
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941.590, Brazil
| | | | | | | |
Collapse
|