1
|
Cubillos EFG, Snebergerova P, Borsodi S, Reichensdorferova D, Levytska V, Asada M, Sojka D, Jalovecka M. Establishment of a stable transfection and gene targeting system in Babesia divergens. Front Cell Infect Microbiol 2023; 13:1278041. [PMID: 38156314 PMCID: PMC10753763 DOI: 10.3389/fcimb.2023.1278041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Eliana F. G. Cubillos
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Pavla Snebergerova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sarka Borsodi
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | | | - Viktoriya Levytska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Obihiro, Japan
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Marie Jalovecka
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
2
|
Müller J, Schlange C, Heller M, Uldry AC, Braga-Lagache S, Haynes RK, Hemphill A. Proteomic characterization of Toxoplasma gondii ME49 derived strains resistant to the artemisinin derivatives artemiside and artemisone implies potential mode of action independent of ROS formation. Int J Parasitol Drugs Drug Resist 2022; 21:1-12. [PMID: 36512904 PMCID: PMC9763631 DOI: 10.1016/j.ijpddr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The sesquiterpene lactone artemisinin and its amino-artemisinin derivatives artemiside (GC008) and artemisone (GC003) are potent antimalarials. The mode of action of artemisinins against Plasmodium sp is popularly ascribed to 'activation' of the peroxide group by heme-Fe(II) or labile Fe(II) to generate C-radicals that alkylate parasite proteins. An alternative postulate is that artemisinins elicit formation of reactive oxygen species by interfering with flavin disulfide reductases resposible for maintaining intraparasitic redox homeostasis. However, in contradistinction to the heme-activation mechanism, the amino-artemisinins are effective in vitro against non-heme-degrading apicomplexan parasites including T. gondii, with IC 50 values of 50-70 nM, and induce distinct ultrastructural alterations. However, T. gondii strains readily adapted to increased concentrations (2.5 μM) of these two compounds within few days. Thus, T. gondii strains that were resistant against artemisone and artemiside were generated by treating the T. gondii reference strain ME49 with stepwise increasing amounts of these compounds, yielding the artemisone resistant strain GC003R and the artemiside resistant strain GC008R. Differential analyses of the proteomes of these resistant strains compared to the wildtype ME49 revealed that 215 proteins were significantly downregulated in artemisone resistant tachyzoites and only 8 proteins in artemiside resistant tachyzoites as compared to their wildtype. Two proteins, namely a hypothetical protein encoded by ORF TGME49_236950, and the rhoptry neck protein RON2 encoded by ORF TGME49_300100 were downregulated in both resistant strains. Interestingly, eight proteins involved in ROS scavenging including catalase and superoxide dismutase were amongst the differentially downregulated proteins in the artemisone-resistant strain. In parallel, ROS formation was significantly enhanced in isolated tachyzoites from the artemisone resistant strain and - to a lesser extent - in tachyzoites from the artemiside resistant strain as compared to wildtype tachyzoites. These findings suggest that amino-artemisinin derivatives display a mechanism of action in T. gondii distinct from Plasmodium.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Carling Schlange
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland.
| |
Collapse
|
3
|
Briquet S, Gissot M, Silvie O. A toolbox for conditional control of gene expression in apicomplexan parasites. Mol Microbiol 2021; 117:618-631. [PMID: 34564906 PMCID: PMC9293482 DOI: 10.1111/mmi.14821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023]
Abstract
Apicomplexan parasites encompass diverse pathogens for humans and animals, including the causative agents of malaria and toxoplasmosis, Plasmodium spp. and Toxoplasma gondii. Genetic manipulation of these parasites has become central to explore parasite biology, unravel gene function and identify new targets for therapeutic strategies. Tremendous progress has been achieved over the past years with the advent of next generation sequencing and powerful genome editing methods. In particular, various methods for conditional gene expression have been developed in both Plasmodium and Toxoplasma to knockout or knockdown essential genes, or for inducible expression of master developmental regulators or mutant versions of proteins. Conditional gene expression can be achieved at three distinct levels. At the DNA level, inducible site‐specific recombinases allow conditional genome editing. At the RNA level, regulation can be achieved during transcription, using stage‐specific or regulatable promoters, or post‐transcriptionally through alteration of mRNA stability or translation. At the protein level, several systems have been developed for inducible degradation or displacement of a protein of interest. In this review, we provide an overview of current systems for conditional control of gene expression in Plasmodium and Toxoplasma parasites, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, CIIL, Univ. Lille, Lille, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Live-Cell FRET Reveals that Malaria Nutrient Channel Proteins CLAG3 and RhopH2 Remain Associated throughout Their Tortuous Trafficking. mBio 2020; 11:mBio.01354-20. [PMID: 32900800 PMCID: PMC7482060 DOI: 10.1128/mbio.01354-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malaria parasites increase their host erythrocyte's permeability to various nutrients, fueling intracellular pathogen development and replication. The plasmodial surface anion channel (PSAC) mediates this uptake and is linked to the parasite-encoded RhopH complex, consisting of CLAG3, RhopH2, and RhopH3. While interactions between these subunits are well established, it is not clear whether they remain associated from their synthesis in developing merozoites through erythrocyte invasion and trafficking to the host membrane. Here, we explored protein-protein interactions between RhopH subunits using live-cell imaging and Förster resonance energy transfer (FRET) experiments. Using the green fluorescent protein (GFP) derivatives mCerulean and mVenus, we generated single- and double-tagged parasite lines for fluorescence measurements. While CLAG3-mCerulean served as an efficient FRET donor for RhopH2-mVenus within rhoptry organelles, mCerulean targeted to this organelle via a short signal sequence produced negligible FRET. Upon merozoite egress and reinvasion, these tagged RhopH subunits were deposited into the new host cell's parasitophorous vacuole; these proteins were then exported and trafficked to the erythrocyte membrane, where CLAG3 and RhopH2 remained fully associated. Fluorescence intensity measurements identified stoichiometric increases in exported RhopH protein when erythrocytes are infected with two parasites; whole-cell patch-clamp revealed a concomitant increase in PSAC functional copy number and a dose effect for RhopH contribution to ion and nutrient permeability. These studies establish live-cell FRET imaging in human malaria parasites, reveal that RhopH subunits traffic to their host membrane destination without dissociation, and suggest quantitative contribution to PSAC formation.IMPORTANCE Malaria parasites grow within circulating red blood cells and uptake nutrients through a pore on their host membrane. Here, we used gene editing to tag CLAG3 and RhopH2, two proteins linked to the nutrient pore, with fluorescent markers and tracked these proteins in living infected cells. After their synthesis in mature parasites, imaging showed that both proteins are packaged into membrane-bound rhoptries. When parasites ruptured their host cells and invaded new red blood cells, these proteins were detected within a vacuole around the parasite before they migrated and inserted in the surface membrane of the host cell. Using simultaneous labeling of CLAG3 and RhopH2, we determined that these proteins interact tightly during migration and after surface membrane insertion. Red blood cells infected with two parasites had twice the protein at their surface and a parallel increase in the number of nutrient pores. Our work suggests that these proteins directly facilitate parasite nutrient uptake from human plasma.
Collapse
|
6
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
7
|
Denny PW. Yeast: bridging the gap between phenotypic and biochemical assays for high-throughput screening. Expert Opin Drug Discov 2018; 13:1153-1160. [DOI: 10.1080/17460441.2018.1534826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul W. Denny
- Department of Biosciences and Centre for Global Infectious Disease, Durham University, Durham, UK
| |
Collapse
|
8
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
9
|
Tetens AK, Hanig S, Kurth M, Greif G, Entzeroth R. Transient transfection of Cryptosporidium baileyi. Parasitol Int 2017; 66:813-816. [PMID: 28916308 DOI: 10.1016/j.parint.2017.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/05/2017] [Accepted: 09/11/2017] [Indexed: 11/23/2022]
Abstract
Here we demonstrate the transient transfection of C. baileyi. We describe the transfection of this apicomplexan parasite and the cultivation in ovo. The functionality of heterologous sequences in C. baileyi was demonstrated by the expression and detection of the mCherry protein in ovo. The mCherry protein was expressed in parasitic stages up to the oocyst stage under the control of the heterologous promoter region of the C. parvum actin gene.
Collapse
Affiliation(s)
- A-K Tetens
- Institute of Systematic Zoology and Parasitology, Faculty of Science, Technische Universität, Dresden, Dresden, Germany.
| | - S Hanig
- Institute of Systematic Zoology and Parasitology, Faculty of Science, Technische Universität, Dresden, Dresden, Germany
| | - M Kurth
- Institute of Systematic Zoology and Parasitology, Faculty of Science, Technische Universität, Dresden, Dresden, Germany
| | - G Greif
- Bayer Animal Health GmbH, 51368 Leverkusen, Germany
| | - R Entzeroth
- Institute of Systematic Zoology and Parasitology, Faculty of Science, Technische Universität, Dresden, Dresden, Germany
| |
Collapse
|
10
|
Ren B, Gupta N. Taming Parasites by Tailoring Them. Front Cell Infect Microbiol 2017; 7:292. [PMID: 28730142 PMCID: PMC5498469 DOI: 10.3389/fcimb.2017.00292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
The next-generation gene editing based on CRISPR (clustered regularly interspaced short palindromic repeats) has been successfully implemented in a wide range of organisms including some protozoan parasites. However, application of such a versatile game-changing technology in molecular parasitology remains fairly underexplored. Here, we briefly introduce state-of-the-art in human and mouse research and usher new directions to drive the parasitology research in the years to come. In precise, we outline contemporary ways to embolden existing apicomplexan and kinetoplastid parasite models by commissioning front-line gene-tailoring methods, and illustrate how we can break the enduring gridlock of gene manipulation in non-model parasitic protists to tackle intriguing questions that remain long unresolved otherwise. We show how a judicious solicitation of the CRISPR technology can eventually balance out the two facets of pathogen-host interplay.
Collapse
Affiliation(s)
- Bingjian Ren
- Faculty of Life Sciences, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Nishith Gupta
- Faculty of Life Sciences, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
11
|
Tools for attenuation of gene expression in malaria parasites. Int J Parasitol 2017; 47:385-398. [PMID: 28153780 DOI: 10.1016/j.ijpara.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
An understanding of the biology of Plasmodium parasites, which are the causative agents of the disease malaria, requires study of gene function. Various reverse genetic tools have been described for determining gene function. These tools can be broadly grouped as trans- and cis-acting. Trans-acting tools control gene functions through synthetic nucleic acid probe molecules matching the sequence of the gene of interest. Once delivered to the parasite, the probe engages with the mRNA of the target gene and attenuates its function. Cis-acting tools control gene function through elements introduced into the gene of interest by DNA transfection. The expression of the modified gene can be controlled using external agents, typically small molecule ligands. In this review, we discuss the strengths and weaknesses of these tools to guide researchers in selecting the appropriate tool for studies of gene function, and for guiding future refinements of these tools.
Collapse
|
12
|
Oldiges DP, Laughery JM, Tagliari NJ, Leite Filho RV, Davis WC, da Silva Vaz I, Termignoni C, Knowles DP, Suarez CE. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine. PLoS Negl Trop Dis 2016; 10:e0005152. [PMID: 27911903 PMCID: PMC5135042 DOI: 10.1371/journal.pntd.0005152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves. Collectively, these data show the efficacy of a transfected HlGST-Cln B. bovis parasite to induce detectable anti-glutathione-S-transferase antibodies and a reduction in tick size and fecundity of R. microplus feeding in experimentally inoculated animals. The cattle tick Rhipicephalus microplus is a hematophagous ectoparasite, responsible for the transmission of lethal parasites such as Babesia sp, limiting cattle production in tropical and subtropical regions of the world. There is an urgent emerging need for improved methods of control for these currently neglected tick and tick borne diseases. It is hypothesized that a dual attenuated-live vector vaccine containing a stably transfected tick antigen elicits protective immune responses against the parasite and the tick vector in vaccinated cattle. Live Babesia vaccines based on attenuated parasites are the only effective method available for preventing acute babesiosis. On the other hand, glutathione-S-transferase from Haemaphysalis longicornis (HlGST) is a known effective antigen against Rhipicephalus microplus, the most common vector for B. bovis. This study describes the development and testing of a transfected, B. bovis vaccine expressing HlGST against the tick R. microplus. A B. bovis clonal line designated HlGST-Cln expressing HlGST and GFP/BSD, and separately a control transfected B. bovis clonal line expressing only GFP/BSD was used to vaccinate calves in two independent experiments. All immunized calves developed mild babesiosis, and only calves immunized with the HlGST-Cln parasite line generated anti-HlGST antibodies. Tick egg fertility and fully engorged female tick weight were reduced significantly in R. microplus feeding on HlGST-Cln-vaccinated calves. Taken together, these data demonstrates the ability of transfected B. bovis to elicit antibodies against a heterologous tick antigen in cattle and to induce partial protection in the vaccinated animals against the cattle tick for the first time, representing a step toward the goal to produce a live vector anti-tick vaccine.
Collapse
Affiliation(s)
- Daiane P. Oldiges
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Nelson Junior Tagliari
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo Viana Leite Filho
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Termignoni
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, United States of America
- * E-mail: ,
| |
Collapse
|
13
|
Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii. PLoS One 2016; 11:e0159306. [PMID: 27458822 PMCID: PMC4961421 DOI: 10.1371/journal.pone.0159306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.
Collapse
|
14
|
Abstract
Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts.
Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion.
Toxoplasma gondii and
Theileria sp., besides
Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol (
T. gondii and
Plasmodium) and how a secreted protein can immortalize the host cell (
Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against
T. gondii and the liver stages of
Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected
Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen.
Collapse
Affiliation(s)
- Frank Seeber
- FG16: Mycotic and parasitic agents and mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Svenja Steinfelder
- Institute of Immunology, Center of Infection Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
15
|
Bilgic HB, Karagenc T, Bakırcı S, Shiels B, Tait A, Kinnaird J, Eren H, Weir W. Identification and Analysis of Immunodominant Antigens for ELISA-Based Detection of Theileria annulata. PLoS One 2016; 11:e0156645. [PMID: 27270235 PMCID: PMC4896419 DOI: 10.1371/journal.pone.0156645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
Tropical or Mediterranean theileriosis, caused by the protozoan parasite Theileria annulata, remains an economically important bovine disease in North Africa, Southern Europe, India, the Middle East and Asia. The disease affects mainly exotic cattle and imposes serious constraints upon livestock production and breed improvement programmes. While microscopic and molecular methods exist which are capable of detecting T. annulata during acute infection, the identification of animals in the carrier state is more challenging. Serological tests, which detect antibodies that react against parasite-encoded antigens, should ideally have the potential to identify carrier animals with very high levels of sensitivity and specificity. However, assays developed to date have suffered from a lack of sensitivity and/or specificity and it is, therefore, necessary to identify novel parasite antigens, which can be developed for this purpose. In the present study, genes encoding predicted antigens were bioinformatically identified in the T. annulata genome. These proteins, together with a panel of previously described antigens, were assessed by western blot analysis for immunoreactivity, and this revealed that four novel candidates and five previously described antigens were recognised by immune bovine serum. Using a combination of immunoprecipitation and mass spectrophotometric analysis, an immunodominant protein (encoded by TA15705) was identified as Ta9, a previously defined T cell antigen. Western blotting revealed another of the five proteins in the Ta9 family, TA15710, also to be an immunodominant protein. However, validation by Enzyme-Linked Immunosorbent Assay indicated that due to either allelic polymorphism or differential immune responses of individual hosts, none of the novel candidates can be considered ideal for routine detection of T. annulata-infected/carrier animals.
Collapse
Affiliation(s)
- Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
- * E-mail: ;
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - Serkan Bakırcı
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Andrew Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Jane Kinnaird
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| | - Hasan Eren
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Isıklı Mevki, 09016, Aydın, Turkey
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, United Kingdom
| |
Collapse
|
16
|
Suarez CE, Johnson WC, Herndon DR, Laughery JM, Davis WC. Integration of a transfected gene into the genome of Babesia bovis occurs by legitimate homologous recombination mechanisms. Mol Biochem Parasitol 2015; 202:23-8. [PMID: 26417662 DOI: 10.1016/j.molbiopara.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 11/27/2022]
Abstract
This study examines the patterns of gene integration of gfp-bsd upon stable transfection into the T3Bo strain of Babesia bovis using a plasmid designed to integrate homologous sequences of the parasite's two identical ef-1α A and B genes. While the transfected BboTf-149-6 cell line displayed two distinct patterns of gene integration, clonal lines derived from this strain by cell sorting contained only single gfp-bsd insertions. Whole genome sequencing of two selected clonal lines, E9 and C6, indicated two distinct patterns of gfp-bsd insertion occurring by legitimate homologous recombination mechanisms: one into the expected ef-1α orf B, and another into the ef-1α B promoter. The data suggest that expression of the ef-1α orf B is not required for development of B. bovis in cultured erythrocyte stages. Use of legitimate homologous recombination mechanisms in transfected B. bovis supports the future use of transfection methods for developing efficient gene function assignment experiments using gene knockout techniques.
Collapse
Affiliation(s)
- Carlos E Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States; Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164-6630, United States.
| | - Wendell C Johnson
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164-6630, United States
| | - David R Herndon
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164-6630, United States
| | - Jacob M Laughery
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States
| | - William C Davis
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States
| |
Collapse
|
17
|
Chung HK, Jacobs CL, Huo Y, Yang J, Krumm SA, Plemper RK, Tsien RY, Lin MZ. Tunable and reversible drug control of protein production via a self-excising degron. Nat Chem Biol 2015. [PMID: 26214256 PMCID: PMC4543534 DOI: 10.1038/nchembio.1869] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe Small Molecule-Assisted Shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, leaving untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized protein copies. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto a RNA virus for which no licensed inhibitors exist. As SMASh does not require permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh only involves a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts.
Collapse
Affiliation(s)
- Hokyung K Chung
- Department of Biology, Stanford University, Stanford, California, USA
| | - Conor L Jacobs
- Department of Biology, Stanford University, Stanford, California, USA
| | - Yunwen Huo
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jin Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stefanie A Krumm
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Richard K Plemper
- 1] Department of Pediatrics, Emory University, Atlanta, Georgia, USA. [2] Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Roger Y Tsien
- 1] Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. [2] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA. [3] Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| | - Michael Z Lin
- 1] Department of Pediatrics, Stanford University, Stanford, California, USA. [2] Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|
19
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
20
|
Denny PW, Steel PG. Yeast as a potential vehicle for neglected tropical disease drug discovery. ACTA ACUST UNITED AC 2014; 20:56-63. [PMID: 25121554 DOI: 10.1177/1087057114546552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-throughput screening (HTS) efforts for neglected tropical disease (NTD) drug discovery have recently received increased attention because several initiatives have begun to attempt to reduce the deficit in new and clinically acceptable therapies for this spectrum of infectious diseases. HTS primarily uses two basic approaches, cell-based and in vitro target-directed screening. Both of these approaches have problems; for example, cell-based screening does not reveal the target or targets that are hit, whereas in vitro methodologies lack a cellular context. Furthermore, both can be technically challenging, expensive, and difficult to miniaturize for ultra-HTS [(u)HTS]. The application of yeast-based systems may overcome some of these problems and offer a cost-effective platform for target-directed screening within a eukaryotic cell context. Here, we review the advantages and limitations of the technologies that may be used in yeast cell-based, target-directed screening protocols, and we discuss how these are beginning to be used in NTD drug discovery.
Collapse
Affiliation(s)
- P W Denny
- Biophysical Sciences Institute, Department of Chemistry and School of Biological Sciences, University Science Laboratories, Durham, UK School of Medicine, Pharmacy and Health, Durham University, Durham, UK
| | - P G Steel
- Biophysical Sciences Institute, Department of Chemistry and School of Biological Sciences, University Science Laboratories, Durham, UK
| |
Collapse
|
21
|
Culleton RL, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int 2014; 64:244-53. [PMID: 25073068 DOI: 10.1016/j.parint.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Genetics has informed almost every aspect of the study of malaria parasites, and remains a key component of much of the research that aims to reduce the burden of the disease they cause. We describe the history of genetic studies of malaria parasites and give an overview of the utility of the discipline to malariology.
Collapse
Affiliation(s)
- Richard L Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
22
|
Advantages and disadvantages of conditional systems for characterization of essential genes in Toxoplasma gondii. Parasitology 2014; 141:1390-8. [PMID: 24926834 DOI: 10.1017/s0031182014000559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dissection of apicomplexan biology has been highly influenced by the genetic tools available for manipulation of parasite DNA. Here, we describe different techniques available for the generation of conditional mutants. Comparison of the advantages and disadvantages of the three most commonly used regulation systems: the tetracycline inducible system, the regulation of protein stability and site-specific recombination are discussed. Using some previously described examples we explore some of the pitfalls involved in gene-function analysis using these systems that can lead to wrong or over-interpretation of phenotypes. We will also mention different options to standardize the application of these techniques for the characterization of gene function in high-throughput.
Collapse
|
23
|
Discovery of compounds blocking the proliferation of Toxoplasma gondii and Plasmodium falciparum in a chemical space based on piperidinyl-benzimidazolone analogs. Antimicrob Agents Chemother 2014; 58:2586-97. [PMID: 24550329 DOI: 10.1128/aac.01445-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 μM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.
Collapse
|
24
|
Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 2013; 6:112-21. [PMID: 24451586 DOI: 10.1038/nchem.1830] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.
Collapse
Affiliation(s)
- Megan H Wright
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Mark D Rackham
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Kaveri Rangachari
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - James A Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Munira Grainger
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - David K Moss
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - William P Heal
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2]
| | | | - Remigiusz A Serwa
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Declan Brady
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - David J Mann
- 1] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [2] Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin J Leatherbarrow
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [3]
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Edward W Tate
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
In vivo imaging in NHP models of malaria: challenges, progress and outlooks. Parasitol Int 2013; 63:206-15. [PMID: 24042056 PMCID: PMC7108422 DOI: 10.1016/j.parint.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Animal models of malaria, mainly mice, have made a large contribution to our knowledge of host-pathogen interactions and immune responses, and to drug and vaccine design. Non-human primate (NHP) models for malaria are admittedly under-used, although they are probably closer models than mice for human malaria; in particular, NHP models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with which they may share a common ancestor, and display similar major features with the human infection and pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their biology is very similar to ours. Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in mouse models. One advantage of these tools is that they limit the need for invasive procedures, such as tissue biopsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating host/parasite interactions. The aim of this review is to bring the malaria community up to date on what is currently possible and what soon will be, in terms of in vivo imaging in NHP models of malaria, to consider the pros and the cons of the various techniques, and to identify challenges.
Collapse
|
26
|
Tymoshenko S, Oppenheim RD, Soldati-Favre D, Hatzimanikatis V. Functional genomics of Plasmodium falciparum using metabolic modelling and analysis. Brief Funct Genomics 2013; 12:316-27. [PMID: 23793264 PMCID: PMC3743259 DOI: 10.1093/bfgp/elt017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets.
Collapse
Affiliation(s)
- Stepan Tymoshenko
- Institute of Chemical Engineering, Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, CH-1015, Switzerland.
| | | | | | | |
Collapse
|
27
|
Pino P. From technology to biology: a malaria genetic toolbox for the functional dissection of essential genes. Mol Microbiol 2013; 88:650-4. [DOI: 10.1111/mmi.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine; CMU; Faculty of Medicine; University of Geneva; Rue Michel-Servet 1; CH-1211; Geneva 4; Switzerland
| |
Collapse
|
28
|
The utility of yeast as a tool for cell-based, target-directed high-throughput screening. Parasitology 2013; 141:8-16. [PMID: 23611102 DOI: 10.1017/s0031182013000425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many Neglected Tropical Diseases (NTDs) have recently been subject of increased focus, particularly with relation to high-throughput screening (HTS) initiatives. These vital endeavours largely rely of two approaches, in vitro target-directed screening using biochemical assays or cell-based screening which takes no account of the target or targets being hit. Despite their successes both of these approaches have limitations; for example, the production of soluble protein and a lack of cellular context or the problems and expense of parasite cell culture. In addition, both can be challenging to miniaturize for ultra (u)HTS and expensive to utilize. Yeast-based systems offer a cost-effective approach to study and screen protein targets in a direct-directed manner within a eukaryotic cellular context. In this review, we examine the utility and limitations of yeast cell-based, target-directed screening. In particular we focus on the currently under-explored possibility of using such formats in uHTS screening campaigns for NTDs.
Collapse
|
29
|
Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum. Malar J 2012; 11:210. [PMID: 22720754 PMCID: PMC3407700 DOI: 10.1186/1475-2875-11-210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Several electroporation protocols exist to transfect exogenous DNA into Plasmodium falciparum. To date, however, only a subjective analysis of their relative efficiencies has been reported. Methods A time-course of luciferase reporter expression is used to provide an objective quantitative analysis of the absolute efficiency of three electroporation techniques; direct electroporation of ring stage infected erythrocytes, preloading of erythrocytes and a novel “double-tap” protocol that combines both approaches. Results Preloading of erythrocytes shows a mean efficiency of 9.59x10-6, some 5–180 fold more efficient than matched experiments utilizing the “double-tap” and direct electroporation of ring stage infected erythrocytes alone, respectively. Conclusion Evidence presented here provides the first quantitative assessment of both the absolute and relative efficiencies of a key molecular tool used to study the biology and pathogenesis of this important human pathogen.
Collapse
|
30
|
Kafsack BFC, Painter HJ, Llinás M. New Agilent platform DNA microarrays for transcriptome analysis of Plasmodium falciparum and Plasmodium berghei for the malaria research community. Malar J 2012; 11:187. [PMID: 22681930 PMCID: PMC3411454 DOI: 10.1186/1475-2875-11-187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/08/2012] [Indexed: 12/02/2022] Open
Abstract
Background DNA microarrays have been a valuable tool in malaria research for over a decade but remain in limited use in part due their relatively high cost, poor availability, and technical difficulty. With the aim of alleviating some of these factors next-generation DNA microarrays for genome-wide transcriptome analysis for both Plasmodium falciparum and Plasmodium berghei using the Agilent 8x15K platform were designed. Methods Probe design was adapted from previously published methods and based on the most current transcript predictions available at the time for P. falciparum or P. berghei. Array performance and transcriptome analysis was determined using dye-coupled, aminoallyl-labelled cDNA and streamlined methods for hybridization, washing, and array analysis were developed. Results The new array design marks a notable improvement in the number of transcripts covered and average number of probes per transcript. Array performance was excellent across a wide range of transcript abundance, with low inter-array and inter-probe variability for relative abundance measurements and it recapitulated previously observed transcriptional patterns. Additionally, improvements in sensitivity permitted a 20-fold reduction in necessary starting RNA amounts, further reducing experimental costs and widening the range of application. Conclusions DNA microarrays utilizing the Agilent 8x15K platform for genome-wide transcript analysis in P. falciparum and P. berghei mark an improvement in coverage and sensitivity, increased availability to the research community, and simplification of the experimental methods.
Collapse
Affiliation(s)
- Björn F C Kafsack
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
31
|
Hasenkamp S, Wong EH, Horrocks P. An improved single-step lysis protocol to measure luciferase bioluminescence in Plasmodium falciparum. Malar J 2012; 11:42. [PMID: 22325061 PMCID: PMC3293040 DOI: 10.1186/1475-2875-11-42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/10/2012] [Indexed: 11/16/2022] Open
Abstract
This report describes the optimization and evaluation of a simple single-step lysis protocol to measure luciferase bioluminescence from genetically modified Plasmodium falciparum. This protocol utilizes a modified commercial buffer to improve speed of assay and consistency in the bioluminescence signal measured by reducing the manipulation steps required to release the cytoplasmic fraction. The utility of this improved assay protocol is demonstrated in typical assays that explore absolute and temporal gene expression activity.
Collapse
Affiliation(s)
- Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Eleanor H Wong
- Infection and Immunity and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8QQ, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
32
|
Abstract
Genetic manipulation of Plasmodium falciparum remains very challenging, mainly due to the parasite genome's high A/T-richness and low transfection efficiency. This chapter includes methods for generating transient and stable transfections by electroporation, allelic replacement with tagged genes, gene deletion, and the analysis of all the above.
Collapse
|