1
|
Castilla-Ibeas A, Zdral S, Oberg KC, Ros MA. The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration. Dev Dyn 2024; 253:798-814. [PMID: 38288855 DOI: 10.1002/dvdy.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 12/20/2024] Open
Abstract
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Department of Cellular and Molecular Signalling, Instituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC-SODERCAN-University of Cantabria), Santander, Spain
| | - Sofía Zdral
- Department of Cellular and Molecular Signalling, Instituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC-SODERCAN-University of Cantabria), Santander, Spain
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, California, USA
| | - Marian A Ros
- Department of Cellular and Molecular Signalling, Instituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC-SODERCAN-University of Cantabria), Santander, Spain
| |
Collapse
|
2
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
3
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
4
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Construction and analysis of mRNA, lncRNA, and transcription factor regulatory networks after retinal ganglion cell injury. Exp Eye Res 2021; 215:108915. [PMID: 34971620 DOI: 10.1016/j.exer.2021.108915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Retinal ganglion cell (RGC) injury is a critical pathological feature of several optic neurodegenerative diseases. The regulatory mechanisms underlying RGC injury remain poorly understood. Recent evidence has highlighted the important roles of long noncoding RNAs (lncRNAs) in degenerative neuropathy but few studies have focused on lncRNAs associated with RGC injury. In this study, we analyzed dysregulated lncRNAs associated with RGC injury, their potential regulatory functions, and the molecular mechanisms underlying the regulation of lncRNAs and transcription factors (TFs). We analyzed lncRNA and mRNA profiles in the GSE142881 dataset associated with RGC injury and identified 1049 differentially expressed genes (DEGs), with 18 differentially expressed (DE) TFs among 883 DE mRNAs and 312 DE lncRNAs. The predicted DE lncRNAs and DE mRNAs were used to construct a lncRNA-mRNA co-expression network. Functional enrichment analysis was performed to explore the functions of the lncRNAs and mRNAs. The co-expression network between DE lncRNAs and DE mRNAs was highly enriched in inflammatory and immune-related pathways, indicating that they play role in the process of RGC injury. Among the DE mRNAs, we screened 18 DE TFs, including activating transcription factor 3 (ATF3), associated with RGC injury. Co-expression analysis predicted that 13 lncRNAs were potential binding targets of ATF3. The screening of the potential targets of these 13 lncRNAs showed that they were also significantly enriched in functional pathways associated with inflammation and apoptosis. After analysis, we constructed the mRNA-ATF3-lncRNA regulatory network after RGCs injury. In summary, we identified the gene module associated with immune and inflammatory responses after optic nerve injury and constructed a regulatory network of lncRNA-TF-mRNA. The results indicate that lncRNAs, by binding to TFs, can regulate downstream genes and function during RGC injury. The results provide a foundation for further studies of the mechanism of RGC injury and provide insight into the clinical diagnosis and investigation direction of neurodegenerative diseases such as traumatic optic neuropathy and glaucoma.
Collapse
|
6
|
Yang N, Young BK, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Optic Nerve Injury is Type Specific. Cells 2020; 9:cells9030677. [PMID: 32164319 PMCID: PMC7140711 DOI: 10.3390/cells9030677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022] Open
Abstract
Retinal ganglion cell (RGC) death occurs in many eye diseases, such as glaucoma and traumatic optic neuropathy (TON). Increasing evidence suggests that the susceptibility of RGCs varies to different diseases in an RGC type-dependent manner. We previously showed that the susceptibility of several genetically identified RGC types to N-methyl-D-aspartate (NMDA) excitotoxicity differs significantly. In this study, we characterize the susceptibility of the same RGC types to optic nerve crush (ONC). We show that the susceptibility of these RGC types to ONC varies significantly, in which BD-RGCs are the most resistant RGC type while W3-RGCs are the most sensitive cells to ONC. We also show that the survival rates of BD-RGCs and J-RGCs after ONC are significantly higher than their survival rates after NMDA excitotoxicity. These results are consistent with the conclusion that the susceptibility of RGCs to ONC varies in an RGC type-dependent manner. Further, the susceptibilities of the same types of RGCs to ONC and NMDA excitotoxicity are significantly different. These are valuable insights for understanding of the selective susceptibility of RGCs to various pathological insults and the development of a strategy to protect RGCs from death in disease conditions.
Collapse
Affiliation(s)
- Ning Yang
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Brent K Young
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114, USA
| | - Ping Wang
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Ning Tian
- VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA; (N.Y.); (B.K.Y.); (P.W.)
- Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84114, USA
- Correspondence: ; Tel.: +01-801-213-2852
| |
Collapse
|
7
|
Bistoletti M, Micheloni G, Baranzini N, Bosi A, Conti A, Filpa V, Pirrone C, Millefanti G, Moro E, Grimaldi A, Valli R, Baj A, Crema F, Giaroni C, Porta G. Homeoprotein OTX1 and OTX2 involvement in rat myenteric neuron adaptation after DNBS-induced colitis. PeerJ 2020; 8:e8442. [PMID: 32095330 PMCID: PMC7024580 DOI: 10.7717/peerj.8442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases are associated with remodeling of neuronal circuitries within the enteric nervous system, occurring also at sites distant from the acute site of inflammation and underlying disturbed intestinal functions. Homeoproteins orthodenticle OTX1 and OTX2 are neuronal transcription factors participating to adaptation during inflammation and underlying tumor growth both in the central nervous system and in the periphery. In this study, we evaluated OTX1 and OTX2 expression in the rat small intestine and distal colon myenteric plexus after intrarectal dinitro-benzene sulfonic (DNBS) acid-induced colitis. METHODS OTX1 and OTX2 distribution was immunohistochemically investigated in longitudinal muscle myenteric plexus (LMMP)-whole mount preparations. mRNAs and protein levels of both OTX1 and OTX2 were evaluated by qRT-PCR and Western blotting in LMMPs. RESULTS DNBS-treatment induced major gross morphology and histological alterations in the distal colon, while the number of myenteric neurons was significantly reduced both in the small intestine and colon. mRNA levels of the inflammatory markers, TNFα, pro-IL1β, IL6, HIF1α and VEGFα and myeloperoxidase activity raised in both regions. In both small intestine and colon, an anti-OTX1 antibody labeled a small percentage of myenteric neurons, and prevalently enteric glial cells, as evidenced by co-staining with the glial marker S100β. OTX2 immunoreactivity was present only in myenteric neurons and was highly co-localized with neuronal nitric oxide synthase. Both in the small intestine and distal colon, the number of OTX1- and OTX2-immunoreactive myenteric neurons significantly increased after DNBS treatment. In these conditions, OTX1 immunostaining was highly superimposable with inducible nitric oxide synthase in both regions. OTX1 and OTX2 mRNA and protein levels significantly enhanced in LMMP preparations of both regions after DNBS treatment. CONCLUSIONS These data suggest that colitis up-regulates OTX1 and OTX2 in myenteric plexus both on site and distantly from the injury, potentially participating to inflammatory-related myenteric ganglia remodeling processes involving nitrergic transmission.
Collapse
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Micheloni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Conti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Pirrone
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giorgia Millefanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Roberto Valli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
Hsieh TH, Lee HHC, Hameed MQ, Pascual-Leone A, Hensch TK, Rotenberg A. Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury. Cereb Cortex 2018; 27:5509-5524. [PMID: 27909008 DOI: 10.1093/cercor/bhw318] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Many neuropsychiatric symptoms that follow traumatic brain injury (TBI), including mood disorders, sleep disturbance, chronic pain, and posttraumatic epilepsy (PTE) are attributable to compromised cortical inhibition. However, the temporal trajectory of cortical inhibition loss and its underlying mechanisms are not known. Using paired-pulse transcranial magnetic stimulation (ppTMS) and immunohistochemistry, we tracked functional and cellular changes of cortical inhibitory network elements after fluid-percussion injury (FPI) in rats. ppTMS revealed a progressive loss of cortical inhibition as early as 2 weeks after FPI. This profile paralleled the increasing levels of cortical oxidative stress, which was accompanied by a gradual loss of parvalbumin (PV) immunoreactivity in perilesional cortex. Preceding the PV loss, we identified a degradation of the perineuronal net (PNN)-a specialized extracellular structure enwrapping cortical PV-positive (PV+) inhibitory interneurons which binds the PV+ cell maintenance factor, Otx2. The trajectory of these impairments underlies the reduced inhibitory tone, which can contribute to posttraumatic neurological conditions, such as PTE. Taken together, our results highlight the use of ppTMS as a biomarker to track the course of cortical inhibitory dysfunction post-TBI. Moreover, the neuroprotective role of PNNs on PV+ cell function suggests antioxidant treatment or Otx2 enhancement as a promising prophylaxis for post-TBI symptoms.
Collapse
Affiliation(s)
- Tsung-Hsun Hsieh
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Henry Hing Cheong Lee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Qadir Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takao K Hensch
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Neuroprotective Transcription Factors in Animal Models of Parkinson Disease. Neural Plast 2015; 2016:6097107. [PMID: 26881122 PMCID: PMC4736191 DOI: 10.1155/2016/6097107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/28/2022] Open
Abstract
A number of transcription factors, including En1/2, Foxa1/2, Lmx1a/b, Nurr1, Otx2, and Pitx3, with key roles in midbrain dopaminergic (mDA) neuron development, also regulate adult mDA neuron survival and physiology. Mouse models with targeted disruption of some of these genes display several features reminiscent of Parkinson disease (PD), in particular the selective and progressive loss of mDA neurons in the substantia nigra pars compacta (SNpc). The characterization of these animal models has provided valuable insights into various mechanisms of PD pathogenesis. Therefore, the dissection of the mechanisms and survival signalling pathways engaged by these transcription factors to protect mDA neuron from degeneration can suggest novel therapeutic strategies. The work on En1/2-mediated neuroprotection also highlights the potential of protein transduction technology for neuroprotective approaches in PD.
Collapse
|
10
|
Duong T, Kim J, Ruley HE, Jo D. Cell-permeable parkin proteins suppress Parkinson disease-associated phenotypes in cultured cells and animals. PLoS One 2014; 9:e102517. [PMID: 25019626 PMCID: PMC4097392 DOI: 10.1371/journal.pone.0102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder of complex etiology characterized by the selective loss of dopaminergic neurons, particularly in the substantia nigra. Parkin, a tightly regulated E3 ubiquitin ligase, promotes the survival of dopaminergic neurons in both PD and Parkinsonian syndromes induced by acute exposures to neurotoxic agents. The present study assessed the potential of cell-permeable parkin (CP-Parkin) as a neuroprotective agent. Cellular uptake and tissue penetration of recombinant, enzymatically active parkin was markedly enhanced by the addition of a hydrophobic macromolecule transduction domain (MTD). The resulting CP-Parkin proteins (HPM13 and PM10) suppressed dopaminergic neuronal toxicity in cells and mice exposed to 6-hydroxydopamine (6-OHDH) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These included enhanced survival and dopamine expression in cultured CATH.a and SH-SY5Y neuronal cells; and protection against MPTP-induced damage in mice, notably preservation of tyrosine hydroxylase-positive cells with enhanced dopamine expression in the striatum and midbrain, and preservation of gross motor function. These results demonstrate that CP-Parkin proteins can compensate for intrinsic limitations in the parkin response and provide a therapeutic strategy to augment parkin activity in vivo.
Collapse
Affiliation(s)
- Tam Duong
- Department of Biomedical Sciences, Chonnam National University Medical School, Kwangju, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - H. Earl Ruley
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Daewoong Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Kwangju, Korea
- ProCell R&D Institute, ProCell Therapeutics, Inc., Seoul, Korea
- * E-mail:
| |
Collapse
|
11
|
Fuchs J, Stettler O, Alvarez-Fischer D, Prochiantz A, Moya KL, Joshi RL. Engrailed signaling in axon guidance and neuron survival. Eur J Neurosci 2012; 35:1837-45. [PMID: 22708594 DOI: 10.1111/j.1460-9568.2012.08139.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several homeoproteins can function in a direct cell non-autonomous fashion to control various biological processes. In the developing nervous system, this mode of signaling has been well documented for Engrailed in the guidance of retinal ganglion cell axons and retino-tectal patterning. Engrailed is also a key factor for mesencephalic dopaminergic (mDA) neurons, not only during development but also in the adult. Haplodeficiency for Engrailed1 leads to progressive adult-onset loss of mDA neurons and several phenotypic alterations reminiscent of Parkinson's disease (PD). Thanks to its transduction properties, Engrailed has been shown to confer neuroprotection in several experimental models of PD. Study of the mechanisms underlying these two Engrailed-mediated effects has revealed a key role of the translation regulation by Engrailed and uncovered an unsuspected link between a homeoprotein and mitochondrial activity. These studies highlight the crucial role of cellular energetic metabolism in neuron development, survival and neurodegeneration, and may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Julia Fuchs
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS unité mixte de recherche 7241/INSERM U1050, Development and Neuropharmacology, 11 place Marcelin Berthelot, Paris F-75005, France
| | | | | | | | | | | |
Collapse
|
12
|
Current World Literature. Curr Opin Ophthalmol 2012; 23:155-9. [DOI: 10.1097/icu.0b013e3283511bcf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat Neurosci 2011; 14:1260-6. [PMID: 21892157 DOI: 10.1038/nn.2916] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022]
Abstract
Mice heterozygous for the homeobox gene Engrailed-1 (En1) display progressive loss of mesencephalic dopaminergic (mDA) neurons. We report that exogenous Engrailed-1 and Engrailed-2 (collectively Engrailed) protect mDA neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I toxin used to model Parkinson's disease in animals. Engrailed enhances the translation of nuclearly encoded mRNAs for two key complex I subunits, Ndufs1 and Ndufs3, and increases complex I activity. Accordingly, in vivo protection against MPTP by Engrailed is antagonized by Ndufs1 small interfering RNA. An association between Engrailed and complex I is further confirmed by the reduced expression of Ndufs1 and Ndufs3 in the substantia nigra pars compacta of En1 heterozygous mice. Engrailed also confers in vivo protection against 6-hydroxydopamine and α-synuclein-A30P. Finally, the unilateral infusion of Engrailed into the midbrain increases striatal dopamine content, resulting in contralateral amphetamine-induced turning. Therefore, Engrailed is both a survival factor for adult mDA neurons and a regulator of their physiological activity.
Collapse
|