1
|
Tanaka A, Maeda S, Nomura T, Llamas-Covarrubias MA, Tanaka S, Jin L, Lim EL, Morikawa H, Kitagawa Y, Akizuki S, Ito Y, Fujimori C, Hirota K, Murase T, Hashimoto M, Higo J, Zamoyska R, Ueda R, Standley DM, Sakaguchi N, Sakaguchi S. Construction of a T cell receptor signaling range for spontaneous development of autoimmune disease. J Exp Med 2023; 220:213728. [PMID: 36454183 PMCID: PMC9718937 DOI: 10.1084/jem.20220386] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Thymic selection and peripheral activation of conventional T (Tconv) and regulatory T (Treg) cells depend on TCR signaling, whose anomalies are causative of autoimmunity. Here, we expressed in normal mice mutated ZAP-70 molecules with different affinities for the CD3 chains, or wild type ZAP-70 at graded expression levels under tetracycline-inducible control. Both manipulations reduced TCR signaling intensity to various extents and thereby rendered those normally deleted self-reactive thymocytes to become positively selected and form a highly autoimmune TCR repertoire. The signal reduction more profoundly affected Treg development and function because their TCR signaling was further attenuated by Foxp3 that physiologically repressed the expression of TCR-proximal signaling molecules, including ZAP-70, upon TCR stimulation. Consequently, the TCR signaling intensity reduced to a critical range generated pathogenic autoimmune Tconv cells and concurrently impaired Treg development/function, leading to spontaneous occurrence of autoimmune/inflammatory diseases, such as autoimmune arthritis and inflammatory bowel disease. These results provide a general model of how altered TCR signaling evokes autoimmune disease.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinji Maeda
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Nomura
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mara Anais Llamas-Covarrubias
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Institute of Research in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Satoshi Tanaka
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lin Jin
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ee Lyn Lim
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hiromasa Morikawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yohko Kitagawa
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shuji Akizuki
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinaga Ito
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chihiro Fujimori
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Tosei Murase
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Motomu Hashimoto
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Rose Zamoyska
- Institute for Immunology and Infection Research, The University of Edinburgh, Edinburgh, UK
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Daron M Standley
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Noriko Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Dwivedi M, Tiwari S, Kemp EH, Begum R. Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 2022; 8:e10450. [PMID: 36082331 PMCID: PMC9445387 DOI: 10.1016/j.heliyon.2022.e10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) play an essential role in maintaining immune tolerance and suppressing inflammation. However, Tregs present major hurdle in eliciting potent anti-cancer immune responses. Therefore, curbing the activity of Tregs represents a novel and efficient way towards successful immunotherapy of cancer. Moreover, there is an emerging interest in harnessing Treg-based strategies for augmenting anti-cancer immunity in different types of the disease. This review summarises the crucial mechanisms of Tregs’ mediated suppression of anti-cancer immunity and strategies to suppress or to alter such Tregs to improve the immune response against tumors. Highlighting important clinical studies, the review also describes current Treg-based therapeutic interventions in cancer, and discusses Treg-suppression by molecular targeting, which may emerge as an effective cancer immunotherapy and as an alternative to detrimental chemotherapeutic agents. Tregs are crucial in maintaining immune tolerance and suppressing inflammation. Tregs present a major obstacle to eliciting potent anti-tumor immune responses. The review summarizes current Treg-based therapeutic interventions in cancer. Treg can be an effective cancer immunotherapy target.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Tarsadi, Surat, Gujarat, 394350, India
- Corresponding author.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - E. Helen Kemp
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
3
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
4
|
Shirakashi M, Maruya M, Hirota K, Tsuruyama T, Matsuo T, Watanabe R, Murata K, Tanaka M, Ito H, Yoshifuji H, Ohmura K, Elewaut D, Sakaguchi S, Fagarasan S, Mimori T, Hashimoto M. Effect of impaired T-cell receptor signaling on the gut microbiota and systemic autoimmunity. Arthritis Rheumatol 2021; 74:641-653. [PMID: 34725966 DOI: 10.1002/art.42016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) signaling abnormalities and gut dysbiosis are thought to be involved in the development of systemic lupus erythematosus (SLE). However, it is not known whether these mechanisms are interrelated. This study explored the impact of defective TCR signaling on microbiota-driven immune responses and the consequent triggering of systemic autoimmunity. METHODS The responses of B6SKG mice harboring a mutation in the zeta-chain-associated protein kinase 70 in terms of spontaneous development of SLE were evaluated in specific-pathogen- and germ-free conditions. Gut microbiome was analyzed using 16S rRNA sequencing. Secretory immunoglobulin (Ig)A production in the gut and T follicular helper cells (Tfh) development in the spleen and Peyer's patches were analyzed. Interleukin (IL)-17-deficient mice and segmented filamentous bacteria (SFB)-specific TCR transgenic mice were used to examine the role of IL-17 and thymic selection. RESULTS SLE development by B6SKG mice was significantly more attenuated in germ free conditions than in specific -pathogen-free conditions. The gut microbiota in B6SKG mice was altered, which was associated with the expansion of SFB and consequent development of SLE by driving Thelper 17 (Th17)-cell differentiation, which was in turn blunted by IL-17 deficiency. Notably, although systemic Tfh development and autoantibody IgG response were enhanced, local gut Tfh and IgA responses were impaired. Moreover, experiments in SFB-specific TCR transgenic mice revealed that this differential response was caused by altered thymic selection of self- and microbiota-reactive TCR because of defective TCR signaling. CONCLUSIONS Defective TCR signaling alters the gut microbiota and promotes systemic autoimmunity by driving Th17-cell differentiation.
Collapse
Affiliation(s)
- Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikako Maruya
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Matsuo
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryu Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Immunology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Clinical Immunology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
5
|
Lorenzo D, GianVincenzo Z, Carlo Luca R, Karan G, Jorge V, Roberto M, Javad P. Oral-Gut Microbiota and Arthritis: Is There an Evidence-Based Axis? J Clin Med 2019; 8:jcm8101753. [PMID: 31652577 PMCID: PMC6832398 DOI: 10.3390/jcm8101753] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome appears to be a significant contributor to musculoskeletal health and disease. Recently, it has been found that oral microbiota are involved in arthritis pathogenesis. Microbiome composition and its functional implications have been associated with the prevention of bone loss and/or reducing fracture risk. The link between gut–oral microbiota and joint inflammation in animal models of arthritis has been established, and it is now receiving increasing attention in human studies. Recent papers have demonstrated substantial alterations in the gut and oral microbiota in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). These alterations resemble those established in systemic inflammatory conditions (inflammatory bowel disease, spondyloarthritides, and psoriasis), which include decreased microbial diversity and a disturbance of immunoregulatory properties. An association between abundance of oral Porphyromonas gingivalis and intestinal Prevotella copri in RA patients compared to healthy controls has been clearly demonstrated. These new findings open important future horizons both for understanding disease pathophysiology and for developing novel biomarkers and treatment strategies. The changes and decreased diversity of oral and gut microbiota seem to play an important role in the etiopathogenesis of RA and OA. However, specific microbial clusters and biomarkers belonging to oral and gut microbiota need to be further investigated to highlight the mechanisms related to alterations in bones and joints inflammatory pathway.
Collapse
Affiliation(s)
- Drago Lorenzo
- Laboratory of Clinical Microbiology, Department of Biomedical Sciences for Health & Microbiome, Culturomics and Biofilm related infections (MCB) Unit, "Invernizzi" Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Zuccotti GianVincenzo
- Department of Pediatrics, V. Buzzi Childrens' Hospital & "Invernizzi" Pediatric Clinical Research Center University of Milan, 20141 Milan, Italy.
| | - Romanò Carlo Luca
- Carlo Luca Romanò, Studio Medico Cecca-Romanò, Corso Venezia, 2, 20121 Milano, Italy.
- Romano Institute, Rruga Ibrahim Rugova, 1, 00100 Tirane, Albania.
| | - Goswami Karan
- Rothman Institute, Thomas Jefferson University, Philadelphia, PA 89814, USA.
| | | | - Mattina Roberto
- Department of Biomedical, Surgical and Dental Science, University of Milan, 20133 Milan, Italy.
| | - Parvizi Javad
- Rothman Institute, Thomas Jefferson University, Philadelphia, PA 89814, USA.
| |
Collapse
|
6
|
Matsuo T, Hashimoto M, Sakaguchi S, Sakaguchi N, Ito Y, Hikida M, Tsuruyama T, Sakai K, Yokoi H, Shirakashi M, Tanaka M, Ito H, Yoshifuji H, Ohmura K, Fujii T, Mimori T. Strain-Specific Manifestation of Lupus-like Systemic Autoimmunity Caused byZap70Mutation. THE JOURNAL OF IMMUNOLOGY 2019; 202:3161-3172. [DOI: 10.4049/jimmunol.1801159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/27/2019] [Indexed: 01/09/2023]
|
7
|
Wu CY, Tsai YY, Chen SY, Lin YP, Shin JW, Wu CC, Yang BC. Interaction of Zap70 and CXCR4 receptor at lamellipodia that determines the directionality during Jurkat T cells chemotaxis. Mol Immunol 2017; 90:245-254. [DOI: 10.1016/j.molimm.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
8
|
Morikawa H, Sakaguchi S. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol Rev 2014; 259:192-205. [DOI: 10.1111/imr.12174] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiromasa Morikawa
- Laboratory of Experimental Immunology; WPI Immunology Frontier Research Center; Osaka University; Osaka Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology; WPI Immunology Frontier Research Center; Osaka University; Osaka Japan
- Department of Experimental Pathology; Institute for Frontier Medical Sciences; Kyoto University; Kyoto Japan
| |
Collapse
|
9
|
Wu DJ, Zhou W, Enouz S, Orrú V, Stanford SM, Maine CJ, Rapini N, Sawatzke K, Engel I, Fiorillo E, Sherman LA, Kronenberg M, Zehn D, Peterson E, Bottini N. Autoimmunity-associated LYP-W620 does not impair thymic negative selection of autoreactive T cells. PLoS One 2014; 9:e86677. [PMID: 24498279 PMCID: PMC3911918 DOI: 10.1371/journal.pone.0086677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/13/2013] [Indexed: 02/07/2023] Open
Abstract
A C1858T (R620W) variation in the PTPN22 gene encoding the tyrosine phosphatase LYP is a major risk factor for human autoimmunity. LYP is a known negative regulator of signaling through the T cell receptor (TCR), and murine Ptpn22 plays a role in thymic selection. However, the mechanism of action of the R620W variant in autoimmunity remains unclear. One model holds that LYP-W620 is a gain-of-function phosphatase that causes alterations in thymic negative selection and/or thymic output of regulatory T cells (Treg) through inhibition of thymic TCR signaling. To test this model, we generated mice in which the human LYP-W620 variant or its phosphatase-inactive mutant are expressed in developing thymocytes under control of the proximal Lck promoter. We found that LYP-W620 expression results in diminished thymocyte TCR signaling, thus modeling a "gain-of-function" of LYP at the signaling level. However, LYP-W620 transgenic mice display no alterations of thymic negative selection and no anomalies in thymic output of CD4(+)Foxp3(+) Treg were detected in these mice. Lck promoter-directed expression of the human transgene also causes no alteration in thymic repertoire or increase in disease severity in a model of rheumatoid arthritis, which depends on skewed thymic selection of CD4(+) T cells. Our data suggest that a gain-of-function of LYP is unlikely to increase risk of autoimmunity through alterations of thymic selection and that LYP likely acts in the periphery perhaps selectively in regulatory T cells or in another cell type to increase risk of autoimmunity.
Collapse
MESH Headings
- Animals
- Arginine/genetics
- Autoimmunity
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- Female
- Flow Cytometry
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Transgenic
- Mutation, Missense
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tryptophan/genetics
Collapse
Affiliation(s)
- Dennis J. Wu
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Wenbo Zhou
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sarah Enouz
- Swiss Vaccine Research Institute, Epalinges, and Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Valeria Orrú
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Christian J. Maine
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Novella Rapini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Kristy Sawatzke
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Isaac Engel
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Edoardo Fiorillo
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Linda A. Sherman
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mitch Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, and Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Erik Peterson
- Center for Immunology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Holmdahl R, Sareila O, Pizzolla A, Winter S, Hagert C, Jaakkola N, Kelkka T, Olsson LM, Wing K, Bäckdahl L. Hydrogen peroxide as an immunological transmitter regulating autoreactive T cells. Antioxid Redox Signal 2013; 18:1463-74. [PMID: 22900704 DOI: 10.1089/ars.2012.4734] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE An unexpected finding, revealed by positional cloning of genetic polymorphisms controlling models for rheumatoid arthritis, exposed a new function of Ncf1 and NADPH oxidase (NOX) 2 controlled oxidative burst. RECENT ADVANCES A decreased capacity to produce ROS due to a natural polymorphism was found to be the major factor leading to more severe arthritis and increased T cell-dependent autoimmunity. CRITICAL ISSUES In the vein of this finding, we here review a possible new role of ROS in regulating inflammatory cell and autoreactive T cell activity. It is postulated that peroxide is an immunologic transmitter secreted by antigen-presenting cells that downregulate the responses by autoreactive T cells. FUTURE DIRECTIONS This may operate at different levels of T cell selection and activation: during negative selection in the thymus, priming of T cells in draining lymph nodes, and while interacting with macrophages in peripheral target tissues.
Collapse
Affiliation(s)
- Rikard Holmdahl
- Medical Inflammation Research, MBB, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
12
|
Pellegrini FP, Marinoni M, Frangione V, Tedeschi A, Gandini V, Ciglia F, Mortara L, Accolla RS, Nespoli L. Down syndrome, autoimmunity and T regulatory cells. Clin Exp Immunol 2012; 169:238-43. [PMID: 22861363 PMCID: PMC3445000 DOI: 10.1111/j.1365-2249.2012.04610.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are more represented in Down syndrome (DS) individuals compared to chromosomally normal people. Natural T regulatory cells (nT(reg) ) have been considered to be primary in the role of controlling the intensity and targets of the immune response. We have investigated the phenotypical and functional alteration of nT(reg) in a group of DS people. The phenotypical characteristic of T(reg) cells of 29 DS was analysed and compared with an age-matched healthy control group. The inhibitory potential of CD4(+) CD25(high) CD127(low) T regulatory cells was evaluated on autologous CD4(+) CD25(-) T cell proliferation in response to activation with a mytogenic pan-stimulus (anti-CD2, anti-CD3 and anti-CD28 antibodies). The CD4(+) CD25(high) cells in the DS and control groups were 2·692±0·3808%, n=29 and 1·246±0·119, n=29%, respectively (P=0.0007), with a percentage of forkhead box protein 3 (FoxP3)-expressing cells of 79·21±3·376%, n=29 and 59·75±4·496%, respectively (P=0.0015). CD4(+) CD25(+) FoxP3(+) cells were increased in peripheral blood from DS subjects (DS mean 5·231±0·6065% n=29, control mean 3·076±0·3140% n=29). The majority of CD4(+) CD25(high) were CD127(low) and expressed a high percentage of FoxP3 (natural T(reg) phenotype). While the proliferative capacity of DS T cells was not altered significantly compared to normal individuals, a reduced inhibitory potential of T(reg) compared to healthy controls was clearly observed (mean healthy control inhibition in T(eff) : T(reg) 1:1 co-culture: 58·9%±4·157%, n=10 versus mean DS inhibition in T(eff) :T(reg) 1:1 co-culture: 39·8±4·788%, n=10, P=0.0075; mean healthy control inhibition in T(eff) : T(reg) 1:0·5 co-culture: 45·10±5·858%, n=10 versus DS inhibition in T(eff) : T(reg) 1:0·5 co-culture: 24·10±5·517%, n=10, P=0.0177). DS people present an over-expressed peripheral nT(reg) population with a defective inhibitory activity that may partially explain the increased frequency of autoimmune disease.
Collapse
Affiliation(s)
- F P Pellegrini
- Pediatric Department, University of Insubria c/o Filippo Del Ponte Hospital General Pathology and Immunology Laboratory, University of Insubria, Varese, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|