1
|
Fischer P, Schiewer E, Broser M, Busse W, Spreen A, Grosse M, Hegemann P, Bartl F. The Functionality of the DC Pair in a Rhodopsin Guanylyl Cyclase from Catenaria anguillulae. J Mol Biol 2024; 436:168375. [PMID: 38092286 DOI: 10.1016/j.jmb.2023.168375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Rhodopsin guanylyl cyclases (RGCs) belong to the class of enzymerhodopsins catalyzing the transition from GTP into the second messenger cGMP, whereas light-regulation of enzyme activity is mediated by a membrane-bound microbial rhodopsin domain, that holds the catalytic center inactive in the dark. Structural determinants for activation of the rhodopsin moiety eventually leading to catalytic activity are largely unknown. Here, we investigate the mechanistic role of the D283-C259 (DC) pair that is hydrogen bonded via a water molecule as a crucial functional motif in the homodimeric C. anguillulae RGC. Based on a structural model of the DC pair in the retinal binding pocket obtained by MD simulation, we analyzed formation and kinetics of early and late photocycle intermediates of the rhodopsin domain wild type and specific DC pair mutants by combined UV-Vis and FTIR spectroscopy at ambient and cryo-temperatures. By assigning specific infrared bands to S-H vibrations of C259 we are able to show that the DC pair residues are tightly coupled. We show that deprotonation of D283 occurs already in the inactive L state as a prerequisite for M state formation, whereas structural changes of C259 occur in the active M state and early cryo-trapped intermediates. We propose a comprehensive molecular model for formation of the M state that activates the catalytic moiety. It involves light induced changes in bond strength and hydrogen bonding of the DC pair residues from the early J state to the active M state and explains the retarding effect of C259 mutants.
Collapse
Affiliation(s)
- Paul Fischer
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Enrico Schiewer
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Wayne Busse
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Anika Spreen
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Max Grosse
- Institut für Biologie, Biophysikalische Chemie, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| | - Franz Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt Universität zu Berlin, Invalidenstr, 42, 10115 Berlin, Germany.
| |
Collapse
|
2
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Kaufmann JCD, Krause BS, Adam S, Ritter E, Schapiro I, Hegemann P, Bartl FJ. Modulation of Light Energy Transfer from Chromophore to Protein in the Channelrhodopsin ReaChR. Biophys J 2020; 119:705-716. [PMID: 32697975 DOI: 10.1016/j.bpj.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022] Open
Abstract
The function of photoreceptors relies on efficient transfer of absorbed light energy from the chromophore to the protein to drive conformational changes that ultimately generate an output signal. In retinal-binding proteins, mainly two mechanisms exist to store the photon energy after photoisomerization: 1) conformational distortion of the prosthetic group retinal, and 2) charge separation between the protonated retinal Schiff base (RSBH+) and its counterion complex. Accordingly, energy transfer to the protein is achieved by chromophore relaxation and/or reduction of the charge separation in the RSBH+-counterion complex. Combining FTIR and UV-Vis spectroscopy along with molecular dynamics simulations, we show here for the widely used, red-activatable Volvox carteri channelrhodopsin-1 derivate ReaChR that energy storage and transfer into the protein depends on the protonation state of glutamic acid E163 (Ci1), one of the counterions of the RSBH+. Ci1 retains a pKa of 7.6 so that both its protonated and deprotonated forms equilibrate at physiological conditions. Protonation of Ci1 leads to a rigid hydrogen-bonding network in the active-site region. This stabilizes the distorted conformation of the retinal after photoactivation and decelerates energy transfer into the protein by impairing the release of the strain energy. In contrast, with deprotonated Ci1 or removal of the Ci1 glutamate side chain, the hydrogen-bonded system is less rigid, and energy transfer by chromophore relaxation is accelerated. Based on the hydrogen out-of-plane (HOOP) band decay kinetics, we determined the activation energy for these processes in dependence of the Ci1 protonation state.
Collapse
Affiliation(s)
- Joel C D Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité Berlin, Berlin, Germany
| | - Benjamin S Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eglof Ritter
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany; Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franz J Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Sineshchekov OA, Govorunova EG, Li H, Wang Y, Melkonian M, Wong GKS, Brown LS, Spudich JL. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae. mBio 2020; 11:e00657-20. [PMID: 32317325 PMCID: PMC7175095 DOI: 10.1128/mbio.00657-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions. We report 19 new BCCRs which, together with the earlier 6 known members of this family, form three branches (subfamilies) of a phylogenetic tree. Here, we show that the conductance mechanisms in two subfamilies differ with respect to involvement of the homolog of the proton donor in rhodopsin pumps. Two BCCRs from the genus Rhodomonas generate photocurrents that rapidly desensitize under continuous illumination. Using a combination of patch clamp electrophysiology, absorption, Raman spectroscopy, and flash photolysis, we found that the desensitization is due to rapid accumulation of a long-lived nonconducting intermediate of the photocycle with unusually blue-shifted absorption with a maximum at 330 nm. These observations reveal diversity within the BCCR family and contribute to deeper understanding of their independently evolved cation channel function.IMPORTANCE Cation channelrhodopsins, light-gated channels from flagellate green algae, are extensively used as optogenetic photoactivators of neurons in research and recently have progressed to clinical trials for vision restoration. However, the molecular mechanisms of their photoactivation remain poorly understood. We recently identified cryptophyte cation channelrhodopsins, structurally different from those of green algae, which have separately evolved to converge on light-gated cation conductance. This study reveals diversity within this new protein family and describes a subclade with unusually rapid desensitization that results in short transient photocurrents in continuous light. Such transient currents have not been observed in the green algae channelrhodopsins and are potentially useful in optogenetic protocols. Kinetic UV-visible (UV-vis) spectroscopy and photoelectrophysiology reveal that the desensitization is caused by rapid accumulation of a nonconductive photointermediate in the photochemical reaction cycle. The absorption maximum of the intermediate is 330 nm, the shortest wavelength reported in any rhodopsin, indicating a novel chromophore structure.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
5
|
Oppermann J, Fischer P, Silapetere A, Liepe B, Rodriguez-Rozada S, Flores-Uribe J, Schiewer E, Keidel A, Vierock J, Kaufmann J, Broser M, Luck M, Bartl F, Hildebrandt P, Wiegert JS, Béjà O, Hegemann P, Wietek J. MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 2019; 10:3315. [PMID: 31346176 PMCID: PMC6658528 DOI: 10.1038/s41467-019-11322-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. ChRs desensitize under continuous bright-light illumination, resulting in a significant decline of photocurrents. Here we describe a metagenomically identified family of phylogenetically distinct anion-conducting ChRs (designated MerMAIDs). MerMAIDs almost completely desensitize during continuous illumination due to accumulation of a late non-conducting photointermediate that disrupts the ion permeation pathway. MerMAID desensitization can be fully explained by a single photocycle in which a long-lived desensitized state follows the short-lived conducting state. A conserved cysteine is the critical factor in desensitization, as its mutation results in recovery of large stationary photocurrents. The rapid desensitization of MerMAIDs enables their use as optogenetic silencers for transient suppression of individual action potentials without affecting subsequent spiking during continuous illumination. Our results could facilitate the development of optogenetic tools from metagenomic databases and enhance general understanding of ChR function.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Paul Fischer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Arita Silapetere
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Bernhard Liepe
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - José Flores-Uribe
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Enrico Schiewer
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Anke Keidel
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Joel Kaufmann
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Matthias Broser
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Meike Luck
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Franz Bartl
- Institute for Biology, Biophysical Chemistry, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - Peter Hildebrandt
- Institute for Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Oded Béjà
- Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - Jonas Wietek
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
- Department of Neurobiology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
6
|
Luck M, Velázquez Escobar F, Glass K, Sabotke MI, Hagedorn R, Corellou F, Siebert F, Hildebrandt P, Hegemann P. Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri. Biochemistry 2019; 58:1878-1891. [PMID: 30768260 DOI: 10.1021/acs.biochem.8b01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tiny picoalga, Ostreococcus tauri, originating from the Thau Lagoon is a member of the marine phytoplankton. Because of its highly reduced genome and small cell size, while retaining the fundamental requirements of a eukaryotic photosynthetic cell, it became a popular model organism for studying photosynthesis or circadian clock-related processes. We analyzed the spectroscopic properties of the photoreceptor domain of the histidine kinase rhodopsin Ot-HKR that is suggested to be involved in the light-induced entrainment of the Ostreococcus circadian clock. We found that the rhodopsin, Ot-Rh, dark state absorbs maximally at 505 nm. Exposure to green-orange light led to the accumulation of a blue-shifted M-state-like absorbance form with a deprotonated Schiff base. This Ot-Rh P400 state had an unusually long lifetime of several minutes. A second long-living photoproduct with a red-shifted absorbance, P560, accumulated upon illumination with blue/UVA light. The resulting photochromicity of the rhodopsin is expected to be advantageous to its function as a molecular control element of the signal transducing HKR domains. The light intensity and the ratio of blue vs green light are reflected by the ratio of rhodopsin molecules in the long-living absorbance forms. Furthermore, dark-state absorbance and the photocycle kinetics vary with the salt content of the environment substantially. This observation is attributed to anion binding in the dark state and a transient anion release during the photocycle, indicating that the salinity affects the photoinduced processes.
Collapse
Affiliation(s)
- Meike Luck
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | | | - Kathrin Glass
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Mareike-Isabel Sabotke
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Rolf Hagedorn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Florence Corellou
- Laboratoire d'Oceanographie Microbienne , Université Pierre et Marie Curie (Paris 6), Centre National de la Recherche Scientifique, Unité Mixte de Recherche , 7621 , Observatoire Oceanologique, Banyuls/mer , France
| | - Friedrich Siebert
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany.,Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik , Albert-Ludwigs-Universität Freiburg , Freiburg 79104 , Germany
| | - Peter Hildebrandt
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| |
Collapse
|
7
|
Bergs A, Schultheis C, Fischer E, Tsunoda SP, Erbguth K, Husson SJ, Govorunova E, Spudich JL, Nagel G, Gottschalk A, Liewald JF. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS One 2018; 13:e0191802. [PMID: 29389997 PMCID: PMC5794093 DOI: 10.1371/journal.pone.0191802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
In optogenetics, rhodopsins were established as light-driven tools to manipulate neuronal activity. However, during long-term photostimulation using channelrhodopsin (ChR), desensitization can reduce effects. Furthermore, requirement for continuous presence of the chromophore all-trans retinal (ATR) in model systems lacking sufficient endogenous concentrations limits its applicability. We tested known, and engineered and characterized new variants of de- and hyperpolarizing rhodopsins in Caenorhabditis elegans. ChR2 variants combined previously described point mutations that may synergize to enable prolonged stimulation. Following brief light pulses ChR2(C128S;H134R) induced muscle activation for minutes or even for hours (‘Quint’: ChR2(C128S;L132C;H134R;D156A;T159C)), thus featuring longer open state lifetime than previously described variants. Furthermore, stability after ATR removal was increased compared to the step-function opsin ChR2(C128S). The double mutants C128S;H134R and H134R;D156C enabled increased effects during repetitive stimulation. We also tested new hyperpolarizers (ACR1, ACR2, ACR1(C102A), ZipACR). Particularly ACR1 and ACR2 showed strong effects in behavioral assays and very large currents with fast kinetics. In sum, we introduce highly light-sensitive optogenetic tools, bypassing previous shortcomings, and thus constituting new tools that feature high effectiveness and fast kinetics, allowing better repetitive stimulation or investigating prolonged neuronal activity states in C. elegans and, possibly, other systems.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Christian Schultheis
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Elisabeth Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Satoshi P. Tsunoda
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Karen Erbguth
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Steven J. Husson
- Systemic Physiological & Ecotoxicological Research (SPHERE), University of Antwerp, Antwerp, Belgium
| | - Elena Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| |
Collapse
|
8
|
Krause BS, Grimm C, Kaufmann JCD, Schneider F, Sakmar TP, Bartl FJ, Hegemann P. Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR. Biophys J 2017; 112:1166-1175. [PMID: 28355544 PMCID: PMC5374998 DOI: 10.1016/j.bpj.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/29/2016] [Accepted: 02/01/2017] [Indexed: 11/26/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λmax = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λmax = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C15=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M2) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C13=C14, C15=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C13=C14 double-bond isomerization.
Collapse
Affiliation(s)
- Benjamin S Krause
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Christiane Grimm
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joel C D Kaufmann
- Institute for Medical Physics and Biophysics, Charité Berlin, Berlin, Germany
| | - Franziska Schneider
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, New York
| | - Franz J Bartl
- Institute for Medical Physics and Biophysics, Charité Berlin, Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Li H, Sineshchekov OA, Wu G, Spudich JL. In Vitro Activity of a Purified Natural Anion Channelrhodopsin. J Biol Chem 2016; 291:25319-25325. [PMID: 27789708 DOI: 10.1074/jbc.c116.760041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/26/2016] [Indexed: 12/29/2022] Open
Abstract
Natural anion channelrhodopsins (ACRs) recently discovered in cryptophyte algae are the most active rhodopsin channels known. They are of interest both because of their unique natural function of light-gated chloride conductance and because of their unprecedented efficiency of membrane hyperpolarization for optogenetic neuron silencing. Light-induced currents of ACRs have been studied in HEK cells and neurons, but light-gated channel conductance of ACRs in vitro has not been demonstrated. Here we report light-induced chloride channel activity of a purified ACR protein reconstituted in large unilamellar vesicles (LUVs). EPR measurements establish that the channels are inserted uniformly "inside-out" with their cytoplasmic surface facing the medium of the LUV suspension. We show by time-resolved flash spectroscopy that the photochemical reaction cycle of a functional purified ACR from Guillardia theta (GtACR1) in LUVs exhibits similar spectral shifts, indicating similar photocycle intermediates as GtACR1 in detergent micelles. Furthermore, the photocycle rate is dependent on electric potential generated by chloride gradients in the LUVs in the same manner as in voltage-clamped animal cells. We confirm with this system that, in contrast to cation-conducting channelrhodopsins, opening of the channel occurs prior to deprotonation of the Schiff base. However, the photointermediate transitions in the LUVs exhibit faster kinetics. The ACR-incorporated LUVs provide a purified defined system amenable to EPR, optical and vibrational spectroscopy, and fluorescence resonance energy transfer measurements of structural changes of ACRs with the molecules in a demonstrably functional state.
Collapse
Affiliation(s)
- Hai Li
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| | - Oleg A Sineshchekov
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| | - Gang Wu
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and.,the Department of Internal Medicine, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030
| | - John L Spudich
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas 77030 and
| |
Collapse
|
10
|
Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M, Diehl A, Geiger MA, Woodmansee D, Trauner D, Hegemann P, Oschkinat H, Hildebrandt P, Stehfest K. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. Biochemistry 2015; 54:5389-400. [PMID: 26237332 DOI: 10.1021/acs.biochem.5b00597] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Channelrhodopsins (ChR) are light-gated ion channels of green algae that are widely used to probe the function of neuronal cells with light. Most ChRs show a substantial reduction in photocurrents during illumination, a process named "light adaptation". The main objective of this spectroscopic study was to elucidate the molecular processes associated with light-dark adaptation. Here we show by liquid and solid-state nuclear magnetic resonance spectroscopy that the retinal chromophore of fully dark-adapted ChR is exclusively in an all-trans configuration. Resonance Raman (RR) spectroscopy, however, revealed that already low light intensities establish a photostationary equilibrium between all-trans,15-anti and 13-cis,15-syn configurations at a ratio of 3:1. The underlying photoreactions involve simultaneous isomerization of the C(13)═C(14) and C(15)═N bonds. Both isomers of this DAapp state may run through photoinduced reaction cycles initiated by photoisomerization of only the C(13)═C(14) bond. RR spectroscopic experiments further demonstrated that photoinduced conversion of the apparent dark-adapted (DAapp) state to the photocycle intermediates P500 and P390 is distinctly more efficient for the all-trans isomer than for the 13-cis isomer, possibly because of different chromophore-water interactions. Our data demonstrating two complementary photocycles of the DAapp isomers are fully consistent with the existence of two conducting states that vary in quantitative relation during light-dark adaptation, as suggested previously by electrical measurements.
Collapse
Affiliation(s)
- Sara Bruun
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Daniel Stoeppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Anke Keidel
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Uwe Kuhlmann
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Meike Luck
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - David Woodmansee
- Department of Chemistry, Ludwig-Maximilians-Universität München , Butenandtstraße 5-13, 81377 München, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München , Butenandtstraße 5-13, 81377 München, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Katja Stehfest
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| |
Collapse
|
11
|
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2015. [PMID: 26216996 DOI: 10.1073/pnas.1507713112] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.
Collapse
|
12
|
Ritter E, Puskar L, Bartl FJ, Aziz EF, Hegemann P, Schade U. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin. Front Mol Biosci 2015. [PMID: 26217670 PMCID: PMC4493399 DOI: 10.3389/fmolb.2015.00038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins.
Collapse
Affiliation(s)
- Eglof Ritter
- Experimentelle Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany
| | - Ljiljana Puskar
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany
| | - Franz J Bartl
- Institut für medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Emad F Aziz
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany ; Fachbereich Physik, Freie Universität Berlin Berlin, Germany
| | - Peter Hegemann
- Experimentelle Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany
| | - Ulrich Schade
- Methods for Material Development, Helmholtz-Zentrum für Materialien und Energie GmbH Berlin, Germany
| |
Collapse
|
13
|
Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014; 186:95-111. [DOI: 10.1016/j.jsb.2014.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/20/2022]
|
14
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
15
|
Ritter E, Piwowarski P, Hegemann P, Bartl FJ. Light-dark adaptation of channelrhodopsin C128T mutant. J Biol Chem 2013; 288:10451-8. [PMID: 23439646 DOI: 10.1074/jbc.m112.446427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Channelrhodopsins are microbial type rhodopsins that operate as light-gated ion channels. Largely prolonged lifetimes of the conducting state of channelrhodopsin-2 may be achieved by mutations of crucial single amino acids, i.e. cysteine 128. Such mutants are of great scientific interest in the field of neurophysiology because they allow neurons to be switched on and off on demand (step function rhodopsins). Due to their slow photocycle, structural alterations of these proteins can be studied by vibrational spectroscopy in more detail than possible with wild type. Here, we present spectroscopic evidence that the photocycle of the C128T mutant involves three different dark-adapted states that are populated according to the wavelength and duration of the preceding illumination. Our results suggest an important role of multiphoton reactions and the previously described side reaction for dark state regeneration. Structural changes that cause formation and depletion of the assumed ion conducting state P520 are only small and follow larger changes that occur early and late in the photocycle, respectively. They require only minor structural rearrangements of amino acids near the retinal binding pocket and are triggered by all-trans/13-cis retinal isomerization, although additional isomerizations are also involved in the photocycle. We will discuss an extended photocycle model of this mutant on the basis of spectroscopic and electrophysiological data.
Collapse
Affiliation(s)
- Eglof Ritter
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
16
|
Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 2012; 287:40083-90. [PMID: 23027869 DOI: 10.1074/jbc.m112.401604] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λ(max) = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λ(max) = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light.
Collapse
Affiliation(s)
- Meike Luck
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|