1
|
Skowyra ML, Feng P, Rapoport TA. Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol 2024; 34:388-405. [PMID: 37743160 PMCID: PMC10957506 DOI: 10.1016/j.tcb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Gao Y, Skowyra ML, Feng P, Rapoport TA. Protein import into peroxisomes occurs through a nuclear pore-like phase. Science 2022; 378:eadf3971. [PMID: 36520918 PMCID: PMC9795577 DOI: 10.1126/science.adf3971] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal proteins are imported from the cytosol in a folded state by the soluble receptor PEX5. How folded cargo crosses the membrane is unknown. Here, we show that peroxisomal import is similar to nuclear transport. The peroxisomal membrane protein PEX13 contains a conserved tyrosine (Y)- and glycine (G)-rich YG domain, which forms a selective phase resembling that formed by phenylalanine-glycine (FG) repeats within nuclear pores. PEX13 resides in the membrane in two orientations that oligomerize and suspend the YG meshwork within the lipid bilayer. Purified YG domains form hydrogels into which PEX5 selectively partitions, by using conserved aromatic amino acid motifs, bringing cargo along. The YG meshwork thus forms an aqueous conduit through which PEX5 delivers folded proteins into peroxisomes.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael L. Skowyra
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Peiqiang Feng
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tom A. Rapoport
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: Glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol 2022; 10:979269. [PMID: 36172271 PMCID: PMC9512073 DOI: 10.3389/fcell.2022.979269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the ‘TriTryps’ parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.
Collapse
Affiliation(s)
- Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Alejandro D. Bonive-Boscan
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Ana J. Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul A. M. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Paul A. M. Michels,
| |
Collapse
|
4
|
Michels PAM, Gualdrón-López M. Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol 2022; 69:e12897. [PMID: 35175680 DOI: 10.1111/jeu.12897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Kinetoplastea and Diplonemea possess peroxisome-related organelles that, uniquely, contain most of the enzymes of the glycolytic pathway and are hence called glycosomes. Enzymes of several other core metabolic pathways have also been located in glycosomes, in addition to some characteristic peroxisomal systems such as pathways of lipid metabolism. A considerable amount of research has been performed on glycosomes of trypanosomes since their discovery four decades ago. Not only the role of the glycosomal enzyme systems in the overall cell metabolism appeared to be unique, but the organelles display also remarkable features regarding their biogenesis and structural properties. These features are similar to those of the well-studied peroxisomes of mammalian and plant cells and yeasts yet exhibit also differences reflecting the large evolutionary distance between these protists and the representatives of other major eukaryotic lineages. Despite all research performed, many questions remain about various properties and the biological roles of glycosomes and peroxisomes. Here we review the current knowledge about glycosomes, often comparing it with information about peroxisomes. Furthermore, we highlight particularly many questions that remain about the biogenesis, and the heterogeneity in structure and content of these enigmatic organelles, and the properties of their boundary membrane.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| |
Collapse
|
5
|
Glycosome heterogeneity in kinetoplastids. Biochem Soc Trans 2021; 49:29-39. [PMID: 33439256 PMCID: PMC7925000 DOI: 10.1042/bst20190517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites have essential organelles called glycosomes that are analogous to peroxisomes present in other eukaryotes. While many of the processes that regulate glycosomes are conserved, there are several unique aspects of their biology that are divergent from other systems and may be leveraged as therapeutic targets for the treatment of kinetoplastid diseases. Glycosomes are heterogeneous organelles that likely exist as sub-populations with different protein composition and function in a given cell, between individual cells, and between species. However, the limitations posed by the small size of these organelles makes the study of this heterogeneity difficult. Recent advances in the analysis of small vesicles by flow-cytometry provide an opportunity to overcome these limitations. In this review, we describe studies that document the diverse nature of glycosomes and propose an approach to using flow cytometry and organelle sorting to study the diverse composition and function of these organelles. Because the cellular machinery that regulates glycosome protein import and biogenesis is likely to contribute, at least in part, to glycosome heterogeneity we highlight some ways in which the glycosome protein import machinery differs from that of peroxisomes in other eukaryotes.
Collapse
|
6
|
Crowe LP, Wilkinson CL, Nicholson KR, Morris MT. Trypanosoma brucei Pex13.2 Is an Accessory Peroxin That Functions in the Import of Peroxisome Targeting Sequence Type 2 Proteins and Localizes to Subdomains of the Glycosome. mSphere 2020; 5:e00744-19. [PMID: 32075879 PMCID: PMC7031615 DOI: 10.1128/msphere.00744-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/30/2020] [Indexed: 01/30/2023] Open
Abstract
Kinetoplastid parasites, including Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, harbor unique organelles known as glycosomes, which are evolutionarily related to peroxisomes. Glycosome/peroxisome biogenesis is mediated by proteins called peroxins that facilitate organelle formation, proliferation, and degradation and import of proteins housed therein. Import of matrix proteins occurs via one of two pathways that are dictated by their peroxisome targeting sequence (PTS). In PTS1 import, a C-terminal tripeptide sequence, most commonly SKL, is recognized by the soluble receptor Pex5. In PTS2 import, a less conserved N-terminal sequence is recognized by Pex7. The soluble receptors deliver their cargo to the import channel consisting minimally of Pex13 and Pex14. While much of the import process is conserved, kinetoplastids are the only organisms to have two Pex13s, Pex13.1 and Pex13.2. It is unclear why trypanosomes require two Pex13s when one is sufficient for most eukaryotes. To interrogate the role of Pex13.2, we have employed biochemical approaches to partially resolve the composition of the Pex13/Pex14 import complexes in T. brucei and characterized glycosome morphology and protein import in Pex13.2-deficient parasites. Here, we show that Pex13.2 is an integral glycosome membrane protein that interacts with Pex13.1 and Pex14. The N terminus of Pex13.2 faces the cytoplasmic side of the membrane, where it can facilitate interactions required for protein import. Two-dimensional gel electrophoresis revealed three glycosome membrane complexes containing combinations of Pex13.1, Pex13.2, and Pex14. The silencing of Pex13.2 resulted in parasites with fewer, larger glycosomes and disrupted glycosome protein import, suggesting the protein is involved in glycosome biogenesis as well as protein import. Furthermore, superresolution microscopy demonstrated that Pex13.2 localizes to discrete foci in the glycosome periphery, indicating that the glycosome periphery is not homogenous.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and a wasting disease called Nagana in livestock. Current treatments are expensive, toxic, and difficult to administer. Because of this, the search for new drug targets is essential. T. brucei has glycosomes that are essential to parasite survival; however, our ability to target them in drug development is hindered by our lack of understanding about how these organelles are formed and maintained. This work forwards our understanding of how the parasite-specific protein Pex13.2 functions in glycosome protein import and lays the foundation for future studies focused on blocking Pex13.2 function, which would be lethal to bloodstream-form parasites that reside in the mammalian bloodstream.
Collapse
Affiliation(s)
- Logan P Crowe
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Christina L Wilkinson
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Kathleen R Nicholson
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Meredith T Morris
- Eukaryotic Innovations Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Kalel VC, Mäser P, Sattler M, Erdmann R, Popowicz GM. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr Opin Microbiol 2018; 46:116-122. [PMID: 30481613 DOI: 10.1016/j.mib.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023]
Abstract
Glycosomes evolved as specialized system for glycolysis in trypanosomatids. These organelle rely on protein import to maintain function. A machinery of peroxin (PEX) proteins is responsible for recognition and transport of glycosomal proteins to the organelle. Disruption of PEX-based import system was expected to be a strategy against trypanosomatids. Recently, a proof of this hypothesis has been presented. Here, we review current information about trypanosomatids' glycosomal transport components as targets for new trypanocidal therapies.
Collapse
Affiliation(s)
- Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
8
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
9
|
Abstract
Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative agents of lethal diseases threatening millions of people around the world. These organisms compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Peroxisome proliferation can occur through growth and division of existing organelles and de novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic requirements of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these findings, it is widely accepted that glycosomes proliferate through growth and division of existing organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been directly demonstrated. Here, we review recent findings that provide support for the existence of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, in the ER of procyclic form T. brucei. In other eukaryotes, peroxins including PEX13 have been found in the ER of cells undergoing de novo biogenesis of peroxisomes. In addition, PEX16 and PEX19 have been characterized in T. brucei, both of which are important for de novo biogenesis in other eukaryotes. Because glycosomes are rapidly remodeled via autophagy during life cycle differentiation, de novo biogenesis could provide a method of restoring glycosome populations following turnover. Together, the findings we summarize provide support for the hypothesis that glycosome proliferation occurs through growth and division of pre-existing organelles and de novo biogenesis of new organelles from the ER and that the level each mechanism contributes is influenced by glucose availability.
Collapse
Affiliation(s)
- Sarah Bauer
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Meredith T. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
10
|
Bauer ST, McQueeney KE, Patel T, Morris MT. Localization of a Trypanosome Peroxin to the Endoplasmic Reticulum. J Eukaryot Microbiol 2016; 64:97-105. [PMID: 27339640 PMCID: PMC5215699 DOI: 10.1111/jeu.12343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Trypanosoma brucei is the causative agent of diseases that affect 30,000–50,000 people annually. Trypanosoma brucei harbors unique organelles named glycosomes that are essential to parasite survival, which requires growth under fluctuating environmental conditions. The mechanisms that govern the biogenesis of these organelles are poorly understood. Glycosomes are evolutionarily related to peroxisomes, which can proliferate de novo from the endoplasmic reticulum or through the growth and division of existing organelles depending on the organism and environmental conditions. The effect of environment on glycosome biogenesis is unknown. Here, we demonstrate that the glycosome membrane protein, TbPex13.1, is localized to glycosomes when cells are cultured under high glucose conditions and to the endoplasmic reticulum in low glucose conditions. This localization in low glucose was dependent on the presence of a C‐terminal tripeptide sequence. Our findings suggest that glycosome biogenesis is influenced by extracellular glucose levels and adds to the growing body of evidence that de novo glycosome biogenesis occurs in trypanosomes. Because the movement of peroxisomal membrane proteins is a hallmark of ER‐dependent peroxisome biogenesis, TbPex13.1 may be a useful marker for the study such processes in trypanosomes.
Collapse
Affiliation(s)
- Sarah T Bauer
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Kelley E McQueeney
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634.,Department of Pharmacology, University of Virginia, 409 Lane Road, Charlottesville, Virginia, 22908
| | - Terral Patel
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| | - Meredith T Morris
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
11
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
12
|
Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. Regulation of peroxisomal matrix protein import by ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:838-49. [PMID: 26367801 DOI: 10.1016/j.bbamcr.2015.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
13
|
Quiñones W, Cáceres AJ, Ruiz MT, Concepción JL. Glycosomal membrane proteins and lipids from Leishmania mexicana. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:27-36. [DOI: 10.1016/j.cbpb.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
14
|
Güther MS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 2014; 13:2796-806. [PMID: 24792668 PMCID: PMC4052807 DOI: 10.1021/pr401209w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Indexed: 01/23/2023]
Abstract
The glycosome of the pathogenic African trypanosome Trypanosoma brucei is a specialized peroxisome that contains most of the enzymes of glycolysis and several other metabolic and catabolic pathways. The contents and transporters of this membrane-bounded organelle are of considerable interest as potential drug targets. Here we use epitope tagging, magnetic bead enrichment, and SILAC quantitative proteomics to determine a high-confidence glycosome proteome for the procyclic life cycle stage of the parasite using isotope ratios to discriminate glycosomal from mitochondrial and other contaminating proteins. The data confirm the presence of several previously demonstrated and suggested pathways in the organelle and identify previously unanticipated activities, such as protein phosphatases. The implications of the findings are discussed.
Collapse
Affiliation(s)
- Maria
Lucia S. Güther
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael D. Urbaniak
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Amy Tavendale
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Alan Prescott
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Michael A. J. Ferguson
- Division of Biological Chemistry and Drug Discovery and Centre for Advanced Scientific
Technologies, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
15
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
16
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
17
|
Krause C, Rosewich H, Woehler A, Gärtner J. Functional analysis of PEX13 mutation in a Zellweger syndrome spectrum patient reveals novel homooligomerization of PEX13 and its role in human peroxisome biogenesis. Hum Mol Genet 2013; 22:3844-57. [PMID: 23716570 DOI: 10.1093/hmg/ddt238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In humans, the concerted action of at least 13 different peroxisomal PEX proteins is needed for proper peroxisome biogenesis. Mutations in any of these PEX genes can lead to lethal neurometabolic disorders of the Zellweger syndrome spectrum (ZSS). Previously, we identified the W313G mutation located within the SH3 domain of the peroxisomal protein, PEX13. As this tryptophan residue is highly conserved in almost all known SH3 proteins, we investigated the pathogenic mechanism of the W313G mutation and its role in PEX13 interactions and functions in peroxisome biogenesis. Here, we report for the first time that human PEX13 interacts with itself in peroxisomes in living cells. We demonstrate that the import of PTS1 (peroxisomal targeting signal 1) proteins is specifically disrupted when homooligomerization of PEX13 is interrupted. Live cell FRET microscopy in living cells as well as co-immunoprecipitation experiments reveal that the highly conserved W313 residue is important for self-association of PEX13 but is not required for interaction with PEX14, a well-established interaction partner at the peroxisomal membrane. Experiments with truncated constructs indicate that although the W313G mutation resides in the C-terminal SH3 domain, the N-terminal half is necessary for peroxisomal localization, which in turn appears to be crucial for homooligomerization. Furthermore, rescue of homooligomerization in the W313G mutant cells through complementation with truncation constructs restores import of peroxisomal matrix proteins. Taken together, the thorough analyses of a ZSS patient mutation unraveled the general cell biological function of PEX13 and its mechanism in the import of peroxisomal matrix PTS1 proteins.
Collapse
|
18
|
Colasante C, Voncken F, Manful T, Ruppert T, Tielens AGM, van Hellemond JJ, Clayton C. Proteins and lipids of glycosomal membranes from Leishmania tarentolae and Trypanosoma brucei. F1000Res 2013; 2:27. [PMID: 24358884 PMCID: PMC3814921 DOI: 10.12688/f1000research.2-27.v1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2013] [Indexed: 01/20/2023] Open
Abstract
In kinetoplastid protists, several metabolic pathways, including glycolysis and purine salvage, are located in glycosomes, which are microbodies that are evolutionarily related to peroxisomes. With the exception of some potential transporters for fatty acids, and one member of the mitochondrial carrier protein family, proteins that transport metabolites across the glycosomal membrane have yet to be identified. We show here that the phosphatidylcholine species composition of
Trypanosoma brucei glycosomal membranes resembles that of other cellular membranes, which means that glycosomal membranes are expected to be impermeable to small hydrophilic molecules unless transport is facilitated by specialized membrane proteins. Further, we identified 464 proteins in a glycosomal membrane preparation from
Leishmania tarentolae. The proteins included approximately 40 glycosomal matrix proteins, and homologues of peroxisomal membrane proteins - PEX11, GIM5A and GIM5B; PXMP4, PEX2 and PEX16 - as well as the transporters GAT1 and GAT3. There were 27 other proteins that could not be unambiguously assigned to other compartments, and that had predicted trans-membrane domains. However, no clear candidates for transport of the major substrates and intermediates of energy metabolism were found. We suggest that, instead, these metabolites are transported via pores formed by the known glycosomal membrane proteins.
Collapse
Affiliation(s)
| | - Frank Voncken
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Theresa Manful
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra, P.O. Box LG 54, Ghana
| | - Thomas Ruppert
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, D69120, Germany
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center, Rotterdam, PO box 2040, Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, PO Box 80176, Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC University Medical Center, Rotterdam, PO box 2040, Netherlands
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, D69120, Germany
| |
Collapse
|
19
|
Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology 2012; 140:1-20. [PMID: 22914253 DOI: 10.1017/s0031182012001278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glycosomes are specialized peroxisomes found in all kinetoplastid organisms. The organelles are unique in harbouring most enzymes of the glycolytic pathway. Matrix proteins, synthesized in the cytosol, cofactors and metabolites have to be transported across the membrane. Recent research on Trypanosoma brucei has provided insight into how these translocations across the membrane occur, although many details remain to be elucidated. Proteins are imported by a cascade of reactions performed by specialized proteins, called peroxins, in which a cytosolic receptor with bound matrix protein inserts itself in the membrane to deliver its cargo into the organelle and is subsequently retrieved from the glycosome to perform further rounds of import. Bulky solutes, such as cofactors and acyl-CoAs, seem to be translocated by specific transporter molecules, whereas smaller solutes such as glycolytic intermediates probably cross the membrane through pore-forming channels. The presence of such channels is in apparent contradiction with previous results that suggested a low permeability of the glycosomal membrane. We propose 3 possible, not mutually exclusive, solutions for this paradox. Glycosomal glycolytic enzymes have been validated as drug targets against trypanosomatid-borne diseases. We discuss the possible implications of the new data for the design of drugs to be delivered into glycosomes.
Collapse
|
20
|
Verplaetse E, Gualdrón-López M, Chevalier N, Michels PAM. Studies on the organization of the docking complex involved in matrix protein import into glycosomes of Trypanosoma brucei. Biochem Biophys Res Commun 2012; 424:781-5. [PMID: 22809509 DOI: 10.1016/j.bbrc.2012.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
Trypanosoma brucei contains peroxisome-like organelles designated glycosomes because they sequester the major part of the glycolytic pathway. Import of proteins into the peroxisomal matrix involves a protein complex associated with the peroxisomal membrane of which PEX13 is a component. Two very different PEX13 isoforms have recently been identified in T. brucei. A striking feature of one of the isoforms, TbPEX13.1, is the presence of a C-terminal type 1 peroxisomal-targeting signal (PTS1), the tripeptide TKL, conserved in its orthologues in all members of the Trypanosomatidae family so far studied, but absent from TbPEX13.2 and the PEX13s in all other organisms. Despite their differences, both TbPEX13s function as part of a docking complex for cytosolic receptors with bound matrix proteins to be imported. We further characterized TbPEX13.1's function in glycosomal matrix-protein import. It provides a frame to anchor another docking complex component, PEX14, to the glycosomal membrane or information to correctly position it within the membrane. To investigate the possible function of the C-terminal TKL, we determined the topology of the C-terminal half of TbPEX13.1 in the membrane and show that its SH3 domain, located immediately adjacent to the PTS1, is at the cytosolic face.
Collapse
Affiliation(s)
- Emilie Verplaetse
- Research Unit for Tropical Diseases, de Duve Institute, Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|