1
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
2
|
Bera SC, America PPB, Maatsola S, Seifert M, Ostrofet E, Cnossen J, Spermann M, Papini FS, Depken M, Malinen AM, Dulin D. Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter. Nucleic Acids Res 2022; 50:7511-7528. [PMID: 35819191 PMCID: PMC9303404 DOI: 10.1093/nar/gkac560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sigma$\end{document} to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein–DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sigma$\end{document} and the RNAP \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\beta$\end{document} subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.
Collapse
Affiliation(s)
- Subhas C Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Pim P B America
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Santeri Maatsola
- Department of Life Technologies, University of Turku, Tykistökatu 6A, 6th floor, 20520 Turku, Finland
| | - Mona Seifert
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Eugeniu Ostrofet
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Jelmer Cnossen
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Monika Spermann
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Flávia S Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, Tykistökatu 6A, 6th floor, 20520 Turku, Finland
| | - David Dulin
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany.,Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lee CY, Myong S. Probing steps in DNA transcription using single-molecule methods. J Biol Chem 2021; 297:101086. [PMID: 34403697 PMCID: PMC8441165 DOI: 10.1016/j.jbc.2021.101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptional regulation is one of the key steps in determining gene expression. Diverse single-molecule techniques have been applied to characterize the stepwise progression of transcription, yielding complementary results. These techniques include, but are not limited to, fluorescence-based microscopy with single or multiple colors, force measuring and manipulating microscopy using magnetic field or light, and atomic force microscopy. Here, we summarize and evaluate these current methodologies in studying and resolving individual steps in the transcription reaction, which encompasses RNA polymerase binding, initiation, elongation, mRNA production, and termination. We also describe the advantages and disadvantages of each method for studying transcription.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Gautam P, Kumar Sinha S. Anticipating response function in gene regulatory networks. J R Soc Interface 2021; 18:20210206. [PMID: 34062105 DOI: 10.1098/rsif.2021.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The origin of an ordered genetic response of a complex and noisy biological cell is intimately related to the detailed mechanism of protein-DNA interactions present in a wide variety of gene regulatory (GR) systems. However, the quantitative prediction of genetic response and the correlation between the mechanism and the response curve is poorly understood. Here, we report in silico binding studies of GR systems to show that the transcription factor (TF) binds to multiple DNA sites with high cooperativity spreads from specific binding sites into adjacent non-specific DNA and bends the DNA. Our analysis is not limited only to the isolated model system but also can be applied to a system containing multiple interacting genes. The controlling role of TF oligomerization, TF-ligand interactions, and DNA looping for gene expression has been also characterized. The predictions are validated against detailed grand canonical Monte Carlo simulations and published data for the lac operon system. Overall, our study reveals that the expression of target genes can be quantitatively controlled by modulating TF-ligand interactions and the bending energy of DNA.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| |
Collapse
|
5
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Dubrovin EV, Schächtele M, Klinov DV, Schäffer TE. Time-Lapse Single-Biomolecule Atomic Force Microscopy Investigation on Modified Graphite in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10027-10034. [PMID: 28850785 DOI: 10.1021/acs.langmuir.7b02220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic force microscopy (AFM) of biomolecular processes at the single-molecule level can provide unique information for understanding molecular function. In AFM studies of biomolecular processes in solution, mica surfaces are predominantly used as substrates. However, owing to its high surface charge, mica may induce high local ionic strength in the vicinity of its surface, which may shift the equilibrium of studied biomolecular processes such as biopolymer adsorption or protein-DNA interaction. In the search for alternative substrates, we have investigated the behavior of adsorbed biomolecules, such as plasmid DNA and E. coli RNA polymerase σ70 subunit holoenzyme (RNAP), on highly oriented pyrolytic graphite (HOPG) surfaces modified with stearylamine and oligoglycine-hydrocarbon derivative (GM) monolayers using AFM in solution. We have demonstrated ionic-strength-dependent DNA mobility on GM HOPG and nativelike dimensions of RNAP molecules adsorbed on modified HOPG surfaces. We propose an approach to the real-time AFM investigation of transcription on stearylamine monolayers on graphite. We conclude that modified graphite allows us to study biomolecules and biomolecular processes on its surface at controlled ionic strength and may be used as a complement to mica in AFM investigations.
Collapse
Affiliation(s)
- Evgeniy V Dubrovin
- University of Tübingen , Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Federal Research and Clinical Center of Physical-Chemical Medicine , Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
- Lomonosov Moscow State University , Leninskie gory 1-2, Moscow 119991, Russian Federation
| | - Marc Schächtele
- University of Tübingen , Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine , Malaya Pirogovskaya 1a, Moscow 119435, Russian Federation
| | - Tilman E Schäffer
- University of Tübingen , Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Kasas S, Dietler G. DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biol 2017; 73:231-239. [PMID: 28716606 DOI: 10.1016/j.semcdb.2017.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022]
Abstract
DNA-protein interactions play an important role in all living organisms on Earth. The advent of atomic force microscopy permitted for the first time to follow and to characterize interaction forces between these two molecular species. After a short description of the AFM and its imaging modes we review, in a chronological order some of the studies that we think importantly contributed to the field.
Collapse
Affiliation(s)
- S Kasas
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Plateforme de Morphologie, Faculté de Médecine, Université de Lausanne, Bugnion 9, 1005 Lausanne, Switzerland.
| | - G Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Chao J, Zhang P, Wang Q, Wu N, Zhang F, Hu J, Fan CH, Li B. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. NANOSCALE 2016; 8:5842-5846. [PMID: 26932823 DOI: 10.1039/c5nr06544e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.
Collapse
Affiliation(s)
- J Chao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Studying RNAP–promoter interactions using atomic force microscopy. Methods 2015; 86:4-9. [DOI: 10.1016/j.ymeth.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/02/2023] Open
|
11
|
Yoshida A, Sakai N, Uekusa Y, Deguchi K, Gilmore JL, Kumeta M, Ito S, Takeyasu K. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy. Genes Cells 2014; 20:85-94. [PMID: 25440894 DOI: 10.1111/gtc.12204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022]
Abstract
The dynamics of the cell membrane and submembrane structures are closely linked, facilitating various cellular activities. Although cell surface research and cortical actin studies have shown independent mechanisms for the cell membrane and the actin network, it has been difficult to obtain a comprehensive understanding of the dynamics of these structures in live cells. Here, we used a combined atomic force/optical microscope system to analyze membrane-based cellular events at nanometer-scale resolution in live cells. Imaging the COS-7 cell surface showed detailed structural properties of membrane invagination events corresponding to endocytosis and exocytosis. In addition, the movement of mitochondria and the spatiotemporal dynamics of the cortical F-actin network were directly visualized in vivo. Cortical actin microdomains with sizes ranging from 1.7×10(4) to 1.4×10(5) nm2 were dynamically rearranged by newly appearing actin filaments, which sometimes accompanied membrane invaginations, suggesting that these events are integrated with the dynamic regulation of submembrane organizations maintained by actin turnovers. These results provide novel insights into the structural aspects of the entire cell membrane machinery which can be visualized with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dangkulwanich M, Ishibashi T, Bintu L, Bustamante C. Molecular mechanisms of transcription through single-molecule experiments. Chem Rev 2014; 114:3203-23. [PMID: 24502198 PMCID: PMC3983126 DOI: 10.1021/cr400730x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Manchuta Dangkulwanich
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Toyotaka Ishibashi
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Lacramioara Bintu
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule
Biophysics, Department of Chemistry, California Institute
for Quantitative Biosciences, Department of Physics, and Department of Molecular and Cell
Biology, Howard Hughes Medical Institute,
and Kavli Energy NanoSciences Institute, University of California,
Berkeley, Berkeley, California 94720, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
|