1
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
2
|
Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Cell Rep 2020; 29:4114-4126.e5. [PMID: 31851937 PMCID: PMC6946597 DOI: 10.1016/j.celrep.2019.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO. Soma et al. reports the solution structure of cytochrome c oxidase assembly factor COA6 and establishes that it functions as a thiol-disulfide oxidoreductase in a relay system that delivers copper to COX2, a copper-containing subunit of the mitochondrial cytochrome c oxidase.
Collapse
Affiliation(s)
- Shivatheja Soma
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Mandar T Naik
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anna A Roesler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Alok Ghosh
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario (2000), Argentina
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
González D, Álamos P, Rivero M, Orellana O, Norambuena J, Chávez R, Levicán G. Deciphering the Role of Multiple Thioredoxin Fold Proteins of Leptospirillum sp. in Oxidative Stress Tolerance. Int J Mol Sci 2020; 21:E1880. [PMID: 32164170 PMCID: PMC7084401 DOI: 10.3390/ijms21051880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Thioredoxin fold proteins (TFPs) form a family of diverse proteins involved in thiol/disulfide exchange in cells from all domains of life. Leptospirillum spp. are bioleaching bacteria naturally exposed to extreme conditions like acidic pH and high concentrations of metals that can contribute to the generation of reactive oxygen species (ROS) and consequently the induction of thiol oxidative damage. Bioinformatic studies have predicted 13 genes that encode for TFP proteins in Leptospirillum spp. We analyzed the participation of individual tfp genes from Leptospirillum sp. CF-1 in the response to oxidative conditions. Genomic context analysis predicted the involvement of these genes in the general thiol-reducing system, cofactor biosynthesis, carbon fixation, cytochrome c biogenesis, signal transduction, and pilus and fimbria assembly. All tfp genes identified were transcriptionally active, although they responded differentially to ferric sulfate and diamide stress. Some of these genes confer oxidative protection to a thioredoxin-deficient Escherichia coli strain by restoring the wild-type phenotype under oxidative stress conditions. These findings contribute to our understanding of the diversity and complexity of thiol/disulfide systems, and of adaptations that emerge in acidophilic microorganisms that allow them to thrive in highly oxidative environments. These findings also give new insights into the physiology of these microorganisms during industrial bioleaching operations.
Collapse
Affiliation(s)
- Daniela González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Pamela Álamos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Matías Rivero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Javiera Norambuena
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| |
Collapse
|
4
|
Canonica F, Hennecke H, Glockshuber R. Biochemical pathway for the biosynthesis of the Cu A center in bacterial cytochrome c oxidase. FEBS Lett 2019; 593:2977-2989. [PMID: 31449676 DOI: 10.1002/1873-3468.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/25/2023]
Abstract
The di-copper center CuA is an essential metal cofactor in cytochrome oxidase (Cox) of mitochondria and many prokaryotes, mediating one-electron transfer from cytochrome c to the site for oxygen reduction. CuA is located in subunit II (CoxB) of Cox and protrudes into the periplasm of Gram-negative bacteria or the mitochondrial intermembrane space. How the two copper ions are brought together to build CoxB·CuA is the subject of this review. It had been known that the reductase TlpA and the metallochaperones ScoI and PcuC are required for CuA formation in bacteria, but the mechanism of copper transfer has emerged only recently for the Bradyrhizobium diazoefficiens system. It consists of the following steps: (a) TlpA keeps the active site cysteine pair of CoxB in its dithiol state as a prerequisite for metal insertion; (b) ScoI·Cu2+ rapidly forms a transient complex with apo-CoxB; (c) PcuC, loaded with Cu1+ and Cu2+ , dissociates this complex to CoxB·Cu2+ , and a second PcuC·Cu1+ ·Cu2+ transfers Cu1+ to CoxB·Cu2+ , yielding mature CoxB·CuA . Variants of this pathway might exist in other bacteria or mitochondria.
Collapse
Affiliation(s)
- Fabia Canonica
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | | | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| |
Collapse
|
5
|
Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Int J Mol Sci 2019; 20:ijms20153830. [PMID: 31387303 PMCID: PMC6696091 DOI: 10.3390/ijms20153830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential cofactor for aerobic respiration, since it is required as a redox cofactor in Cytochrome c Oxidase (COX). This ancient and highly conserved enzymatic complex from the family of heme-copper oxidase possesses two copper sites: CuA and CuB. Biosynthesis of the oxidase is a complex, stepwise process that requires a high number of assembly factors. In this review, we summarize the state-of-the-art in the assembly of COX, with special emphasis in the assembly of copper sites. Assembly of the CuA site is better understood, being at the same time highly variable among organisms. We also discuss the current challenges that prevent the full comprehension of the mechanisms of assembly and the pending issues in the field.
Collapse
|
6
|
Canonica F, Klose D, Ledermann R, Sauer MM, Abicht HK, Quade N, Gossert AD, Chesnov S, Fischer HM, Jeschke G, Hennecke H, Glockshuber R. Structural basis and mechanism for metallochaperone-assisted assembly of the Cu A center in cytochrome oxidase. SCIENCE ADVANCES 2019; 5:eaaw8478. [PMID: 31392273 PMCID: PMC6669012 DOI: 10.1126/sciadv.aaw8478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu1.5+•Cu1.5+ redox center (CuA) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•CuA center in vitro from apo-CoxB and the holo-forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu2+•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway. Moreover, our structural data revealed that PcuC has two copper-binding sites, one each for Cu1+ and Cu2+, and that only PcuC•Cu1+•Cu2+ can release CoxB•Cu2+ from the ScoI•Cu2+•CoxB complex. The CoxB•CuA center was then formed quantitatively by transfer of Cu1+ from a second equivalent of PcuC•Cu1+•Cu2+ to CoxB•Cu2+. This metalation pathway is consistent with all available in vivo data and identifies the sources of the Cu ions required for CuA center formation and the order of their delivery to CoxB.
Collapse
Affiliation(s)
- Fabia Canonica
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Maximilian M. Sauer
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Helge K. Abicht
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nick Quade
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Alvar D. Gossert
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Serge Chesnov
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | | | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Stewart LJ, Thaqi D, Kobe B, McEwan AG, Waldron KJ, Djoko KY. Handling of nutrient copper in the bacterial envelope. Metallomics 2019; 11:50-63. [DOI: 10.1039/c8mt00218e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insertion of copper into bacterial cuproenzymesin vivodoes not always require a copper-binding metallochaperone – why?
Collapse
Affiliation(s)
- Louisa J. Stewart
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Denis Thaqi
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
- Institute for Molecular Bioscience
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Kevin J. Waldron
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | | |
Collapse
|
8
|
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS One 2018; 13:e0195358. [PMID: 29677198 PMCID: PMC5909903 DOI: 10.1371/journal.pone.0195358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.
Collapse
|
9
|
Roszczenko P, Grzeszczuk M, Kobierecka P, Wywial E, Urbanowicz P, Wincek P, Nowak E, Jagusztyn-Krynicka EK. Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 2015; 15:135. [PMID: 26141380 PMCID: PMC4491210 DOI: 10.1186/s12866-015-0471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Magdalena Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Paweł Urbanowicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Piotr Wincek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | |
Collapse
|
10
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 2015; 6:570. [PMID: 26106374 PMCID: PMC4460558 DOI: 10.3389/fmicb.2015.00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.
Collapse
|
11
|
Dash BP, Alles M, Bundschuh FA, Richter OMH, Ludwig B. Protein chaperones mediating copper insertion into the CuA site of the aa3-type cytochrome c oxidase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:202-211. [PMID: 25445316 DOI: 10.1016/j.bbabio.2014.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/27/2022]
Abstract
The biogenesis of the mitochondrial cytochrome c oxidase is a complex process involving the stepwise assembly of its multiple subunits encoded by two genetic systems. Moreover, several chaperones are required to recruit and insert the redox-active metal centers into subunits I and II, two a-type hemes and a total of three copper ions, two of which form the CuA center located in a hydrophilic domain of subunit II. The copper-binding Sco protein(s) have been implicated with the metallation of this site in various model organisms. Here we analyze the role of the two Sco homologues termed ScoA and ScoB, along with two other copper chaperones, on the biogenesis of the cytochrome c oxidase in the bacterium Paracoccus denitrificans by deleting each of the four genes individually or pairwise, followed by assessing the functionality of the assembled oxidase both in intact membranes and in the purified enzyme complex. Copper starvation leads to a drastic decrease of oxidase activity in membranes from strains involving the scoB deletion. This loss is shown to be of dual origin, (i) a severe drop in steady-state oxidase levels in membranes, and (ii) a diminished enzymatic activity of the remaining oxidase complex, traced back to a lower copper content, specifically in the CuA site of the enzyme. Neither of the other proteins addressed here, ScoA or the two PCu proteins, exhibit a direct effect on the metallation of the CuA site in P. denitrificans, but are discussed as potential interaction partners of ScoB.
Collapse
Affiliation(s)
| | - Melanie Alles
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Freya Alena Bundschuh
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Oliver-M H Richter
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany
| | - Bernd Ludwig
- Institute of Biochemistry, Molecular Genetics, Goethe University, D-60438 Frankfurt, Germany.
| |
Collapse
|
12
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
13
|
Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:E2733-40. [PMID: 23818601 PMCID: PMC3718131 DOI: 10.1073/pnas.1305443110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The light-harvesting complexes of plants have evolved the ability to switch between efficient light harvesting and quenching forms to optimize photosynthesis in response to the environment. Several distinct mechanisms, collectively termed "nonphotochemical quenching" (NPQ), provide flexibility in this response. Here we report the isolation and characterization of a mutant, suppressor of quenching 1 (soq1), that has high NPQ even in the absence of photosystem II subunit S (PsbS), a protein that is necessary for the rapidly reversible component of NPQ. The formation of NPQ in soq1 was light intensity-dependent, and it exhibited slow relaxation kinetics and other characteristics that distinguish it from known NPQ components. Treatment with chemical inhibitors or an uncoupler, as well as crosses to mutants known to affect other NPQ components, showed that the NPQ in soq1 does not require a transthylakoid pH gradient, zeaxanthin formation, or the phosphorylation of light-harvesting complexes, and it appears to be unrelated to the photosystem II damage-and-repair cycle. Measurements of pigments and chlorophyll fluorescence lifetimes indicated that the additional NPQ in soq1 is the result of a decrease in chlorophyll excited-state lifetime and not pigment bleaching. The SOQ1 gene was isolated by map-based cloning, and it encodes a previously uncharacterized thylakoid membrane protein with thioredoxin-like and β-propeller domains located in the lumen and a haloacid-dehalogenase domain exposed to the chloroplast stroma. We propose that the role of SOQ1 is to prevent formation of a slowly reversible form of antenna quenching, thereby maintaining the efficiency of light harvesting.
Collapse
Affiliation(s)
- Matthew D. Brooks
- Howard Hughes Medical Institute
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Emily J. Sylak-Glassman
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Graham R. Fleming
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| |
Collapse
|
14
|
Yoon JY, Kim J, An DR, Lee SJ, Kim HS, Im HN, Yoon HJ, Kim JY, Kim SJ, Han BW, Suh SW. Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:735-46. [PMID: 23633582 DOI: 10.1107/s0907444913001236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blundell KLIM, Wilson MT, Vijgenboom E, Worrall JAR. The role of the Cys-X-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein. Dalton Trans 2013; 42:10608-16. [DOI: 10.1039/c3dt50540e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|