1
|
Xue Z, Quan S. Understanding the Stabilization Mechanism of a Thermostable Mutant of Hygromycin B Phosphotransferase by Protein Sector-Guided Dynamic Analysis. ACS OMEGA 2023; 8:25739-25748. [PMID: 37521677 PMCID: PMC10372938 DOI: 10.1021/acsomega.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023]
Abstract
Point mutations can exert beneficial effects on proteins, including stabilization. The stabilizing effects of mutations are typically attributed to changes in free energy and residue interactions. However, these explanations lack detail and physical insights, which hinder the mechanistic study of protein stabilization and prevent accurate computational prediction of stabilizing mutations. Here, we investigate the physical mechanism underlying the enhanced thermostability of a Hygromycin B phosphotransferase mutant, Hph5. We find that the unpredictable mutation A118V induces rotation of F199, allowing it to establish an aromatic-aromatic interaction with W235. In contrast, the predictable mutation T246A acts through static hydrophobic interactions within the protein core. These discoveries were accelerated by a residue-coevolution-based theory, which links mutational effects to stability-associated local structures, providing valuable guidance for mechanistic exploration. The established workflow will benefit the development of accurate stability prediction programs and can be used to mine a protein stability database for undiscovered physical mechanisms.
Collapse
Affiliation(s)
- Zixiao Xue
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing (SCICB), East
China University of Science and Technology, Shanghai 200237, China
| | - Shu Quan
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing (SCICB), East
China University of Science and Technology, Shanghai 200237, China
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
| |
Collapse
|
2
|
Tsakaneli A, Williams O. Drug Repurposing for Targeting Acute Leukemia With KMT2A ( MLL)-Gene Rearrangements. Front Pharmacol 2021; 12:741413. [PMID: 34594227 PMCID: PMC8478155 DOI: 10.3389/fphar.2021.741413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment failure rates of acute leukemia with rearrangements of the Mixed Lineage Leukemia (MLL) gene highlight the need for novel therapeutic approaches. Taking into consideration the limitations of the current therapies and the advantages of novel strategies for drug discovery, drug repurposing offers valuable opportunities to identify treatments and develop therapeutic approaches quickly and effectively for acute leukemia with MLL-rearrangements. These approaches are complimentary to de novo drug discovery and have taken advantage of increased knowledge of the mechanistic basis of MLL-fusion protein complex function as well as refined drug repurposing screens. Despite the vast number of different leukemia associated MLL-rearrangements, the existence of common core oncogenic pathways holds the promise that many such therapies will be broadly applicable to MLL-rearranged leukemia as a whole.
Collapse
Affiliation(s)
- Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Kelly B, Hollingsworth SA, Blakemore DC, Owen RM, Storer RI, Swain NA, Aydin D, Torella R, Warmus JS, Dror RO. Delineating the Ligand-Receptor Interactions That Lead to Biased Signaling at the μ-Opioid Receptor. J Chem Inf Model 2021; 61:3696-3707. [PMID: 34251810 PMCID: PMC8317888 DOI: 10.1021/acs.jcim.1c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/28/2022]
Abstract
Biased agonists, which selectively stimulate certain signaling pathways controlled by a G protein-coupled receptor (GPCR), hold great promise as drugs that maximize efficacy while minimizing dangerous side effects. Biased agonists of the μ-opioid receptor (μOR) are of particular interest as a means to achieve analgesia through G protein signaling without dose-limiting side effects such as respiratory depression and constipation. Rational structure-based design of biased agonists remains highly challenging, however, because the ligand-mediated interactions that are key to activation of each signaling pathway remain unclear. We identify several compounds for which the R- and S-enantiomers have distinct bias profiles at the μOR. These compounds serve as excellent comparative tools to study bias because the identical physicochemical properties of enantiomer pairs ensure that differences in bias profiles are due to differences in interactions with the μOR binding pocket. Atomic-level simulations of compounds at μOR indicate that R- and S-enantiomers adopt different poses that form distinct interactions with the binding pocket. A handful of specific interactions with highly conserved binding pocket residues appear to be responsible for substantial differences in arrestin recruitment between enantiomers. Our results offer guidance for rational design of biased agonists at μOR and possibly at related GPCRs.
Collapse
Affiliation(s)
- Brendan Kelly
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Scott A. Hollingsworth
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - David C. Blakemore
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert M. Owen
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - R. Ian Storer
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nigel A. Swain
- Pfizer Medicine Design, The
Portway, Granta Park, Cambridge CB21 6GS, U.K.
| | - Deniz Aydin
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| | - Rubben Torella
- Pfizer Medicine Design, 610
Main Street, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Warmus
- Pfizer Medicine Design,
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ron O. Dror
- Departments of Computer Science, Molecular and
Cellular Physiology, and Structural Biology & Institute for Computational and
Mathematical Engineering, Stanford University, Stanford,
California 94305, United States
| |
Collapse
|
4
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
5
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. PLoS Comput Biol 2017; 13:e1005299. [PMID: 28095400 PMCID: PMC5240922 DOI: 10.1371/journal.pcbi.1005299] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. The diversity of allosteric mechanisms in the Hsp70 proteins could range from modulation of the inter-domain interactions and conformational dynamics to fine-tuning of the Hsp70 interactions with co-chaperones. The goal of this study is to present a systematic computational analysis of the dynamic and evolutionary factors underlying allosteric structural transformations of the Hsp70 proteins. We investigated the relationship between functional dynamics, residue coevolution, and network organization of residue interactions in the Hsp70 proteins. The results of this study revealed that conformational dynamics of the Hsp70 proteins may be linked with coevolutionary propensities and mutual information dependencies of the protein residues. Modularity and connectivity of allosteric interactions in the Hsp70 chaperones are coordinated by stable functional sites that feature unique coevolutionary signatures and high network centrality. The emergence of the inter-domain communities that are coordinated by functional centers and include highly coevolving residues could facilitate structural transitions through cooperative reorganization of the local interacting modules. We determined that the differences in the modularity of the residue interactions and organization of coevolutionary networks in DnaK may be associated with variations in their allosteric mechanisms. The network signatures of the DnaK structures are characteristic of a population-shift allostery that allows for coordinated structural rearrangements of local communities. A dislocation of mediating centers and insufficient coevolutionary coupling between functional regions may render a reduced cooperativity and promote a limited entropy-driven allostery in the Sse1 chaperone that occurs without structural changes. The results of this study showed that a network-centric framework and a community-hopping model of allosteric communication pathways may provide novel insights into molecular and evolutionary principles of allosteric regulation in the Hsp70 proteins.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tse A, Verkhivker GM. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. PLoS One 2015; 10:e0130203. [PMID: 26075886 PMCID: PMC4468085 DOI: 10.1371/journal.pone.0130203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.
Collapse
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3:16. [PMID: 25914884 PMCID: PMC4390903 DOI: 10.3389/fcell.2015.00016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.
Collapse
Affiliation(s)
- Eiman Aleem
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA ; Department of Zoology, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Robert J Arceci
- Department of Child Health, The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix Phoenix, AZ, USA
| |
Collapse
|
9
|
Zhao Y, Wang Y, Gao Y, Li G, Huang J. Integrated analysis of residue coevolution and protein structures capture key protein sectors in HIV-1 proteins. PLoS One 2015; 10:e0117506. [PMID: 25671429 PMCID: PMC4324911 DOI: 10.1371/journal.pone.0117506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/24/2014] [Indexed: 02/07/2023] Open
Abstract
HIV type 1 (HIV-1) is characterized by its rapid genetic evolution, leading to challenges in anti-HIV therapy. However, the sequence variations in HIV-1 proteins are not randomly distributed due to a combination of functional constraints and genetic drift. In this study, we examined patterns of sequence variability for evidence of linked sequence changes (termed as coevolution or covariation) in 15 HIV-1 proteins. It shows that the percentage of charged residues in the coevolving residues is significantly higher than that in all the HIV-1 proteins. Most of the coevolving residues are spatially proximal in the protein structures and tend to form relatively compact and independent units in the tertiary structures, termed as "protein sectors". These protein sectors are closely associated with anti-HIV drug resistance, T cell epitopes, and antibody binding sites. Finally, we explored candidate peptide inhibitors based on the protein sectors. Our results can establish an association between the coevolving residues and molecular functions of HIV-1 proteins, and then provide us with valuable knowledge of pathology of HIV-1 and therapeutics development.
Collapse
Affiliation(s)
- Yuqi Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.32 Jiaochang Donglu Kunming, 650223 Yunnan, China
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, United States of America
- * E-mail: (YZ); (JH)
| | - Yanjie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuedong Gao
- Kunming Biological Diversity Regional Center of Instruments, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Gonghua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.32 Jiaochang Donglu Kunming, 650223 Yunnan, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.32 Jiaochang Donglu Kunming, 650223 Yunnan, China
- Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan 650223, China
- * E-mail: (YZ); (JH)
| |
Collapse
|