1
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods. Comput Struct Biotechnol J 2021; 19:3720-3734. [PMID: 34285774 PMCID: PMC8258797 DOI: 10.1016/j.csbj.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
A hybrid stochastic/deterministic model of mouse rod phototransduction is presented. Rod photocurrent to photovoltage conversion in darkness is accurately characterized. Photoresponses to dim and bright stimuli and in various mutants are well reproduced. Recently debated molecular mechanisms of the phototransduction cascade are examined.
The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine-5′-triphosphate
- Arr, arrestin
- BG, background illumination
- CNG, cyclic nucleotide-gated (channel)
- CSM, completely substituted mutant of rhodopsin
- CV, coefficient of variation
- DM, deterministic model
- Dynamic modeling
- E, effector of the phototransduction cascade, activated PDE
- FFT, fast Fourier-transform
- GC, guanylate cyclase
- GCAPs, guanylate cyclase-activating proteins
- GDP, guanosine-5′-diphosphate
- GPCR, G protein-coupled receptor
- GTP, guanosine-5′-triphosphate
- Gt, G protein/transducin
- Gα, α-subunit of the G protein
- Gβγ, β- and γ-subunit of the G protein
- HSDM, hybrid stochastic/deterministic model
- Light adaptation
- MPR, multiple photon response
- PDE, phosphodiesterase 6
- Ph, photons
- Phototransduction
- R, rhodopsin
- RGS, regulator of G protein signaling
- RK, rhodopsin kinase
- ROS, rod outer segment
- Rec, recoverin
- Rn, activated rhodopsin that has been phosphorylated n times
- SD, standard deviation
- SPR, single photon response
- Stochastic simulation
- Systems biology
- TTP, time to peak
- cGMP, cyclic guanosine monophosphate
- ΔJ, photocurrent
- ΔU, photovoltage
Collapse
|
3
|
Park PSH. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Arch 2021; 473:1361-1376. [PMID: 33591421 DOI: 10.1007/s00424-021-02522-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. PLoS One 2020; 15:e0226123. [PMID: 32032370 PMCID: PMC7006936 DOI: 10.1371/journal.pone.0226123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The visual photopigment protein rhodopsin (Rh) is a typical G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disk membrane of rod-photoreceptor cells. Rh molecule has a tendency to form dimer, and the dimer tends to form rows, which is suggested to heighten phototransduction efficiency in single-photon regime. In addition, the dimerization confers Rh an affinity for lipid raft, i.e. raftophilicity. However, the mechanism by which Rh-dimer raftophilicity contributes to the organization of the higher order structure remains unknown. In this study, we performed coarse-grained molecular dynamics simulations of a disk membrane model containing unsaturated lipids, saturated lipids with cholesterol, and Rh-dimers. We described the Rh-dimers by two-dimensional particle populations where the palmitoyl moieties of each Rh exhibits raftophilicity. We simulated the structuring of Rh in a disk for two types of Rh-dimer, i.e., the most and second most stable Rh dimers, which exposes the raftophilic regions at the dimerization-interface (H1/H8 dimer) and two edges away from the interface (H4/H5 dimer), respectively. Our simulations revealed that only the H1/H8 dimer could form a row structure. A small number of raftophilic lipids recruited to and intercalated in a narrow space between H1/H8 dimers stabilize the side-by-side interaction between dimers in a row. Our results implicate that the nano-sized lipid raft domains act as a “glue” to organize the long row structures of Rh-dimers.
Collapse
Affiliation(s)
- Yukito Kaneshige
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Yasushi Tanimoto
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
5
|
Park PSH. Rhodopsin Oligomerization and Aggregation. J Membr Biol 2019; 252:413-423. [PMID: 31286171 DOI: 10.1007/s00232-019-00078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the light receptor in photoreceptor cells of the retina and a prototypical G protein-coupled receptor. Two types of quaternary structures can be adopted by rhodopsin. If rhodopsin folds and attains a proper tertiary structure, it can then form oligomers and nanodomains within the photoreceptor cell membrane. In contrast, if rhodopsin misfolds, it cannot progress through the biosynthetic pathway and instead will form aggregates that can cause retinal degenerative disease. In this review, emerging views are highlighted on the supramolecular organization of rhodopsin within the membrane of photoreceptor cells and the aggregation of rhodopsin that can lead to retinal degeneration.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Hayashi F, Saito N, Tanimoto Y, Okada K, Morigaki K, Seno K, Maekawa S. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Commun Biol 2019; 2:209. [PMID: 31240247 PMCID: PMC6570657 DOI: 10.1038/s42003-019-0459-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disc membrane. Recent studies have suggested that rhodopsin forms highly ordered rows of dimers responsible for single-photon detection by rod photoreceptors. Dimerization is also known to confer to rhodopsin a high affinity for ordered lipids (raftophilicity). However, the role of rhodopsin organization and its raftophilicity in phototransduction remains obscure, owing to the lack of direct observation of rhodopsin dynamics and distribution in native discs. Here, we explore the single-molecule and semi-multimolecule behaviour of rhodopsin in native discs. Rhodopsin forms transient meso-scale clusters, even in darkness, which are loosely confined to the disc centre. Cognate G protein transducin co-distributes with rhodopsin, and exhibits lateral translocation to the disc periphery upon activation. We demonstrate that rhodopsin offers inherently distributed and stochastic platforms for G protein signalling by self-organizing raftophilic clusters, which continually repeat generation/extinction in the disc membrane.
Collapse
Affiliation(s)
- Fumio Hayashi
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Natsumi Saito
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Yasushi Tanimoto
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keisuke Okada
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Kenichi Morigaki
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keiji Seno
- Faculty of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
- International Mass Imaging Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Shohei Maekawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
7
|
Senapati S, Park PSH. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy. Methods Mol Biol 2019; 1886:61-74. [PMID: 30374862 DOI: 10.1007/978-1-4939-8894-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane proteins play an integral role in cellular communication. They are often organized within the crowded cell membrane into nanoscale domains (i.e., nanodomains), which facilitates their function in cell signaling processes. The visualization of membrane proteins and nanodomains within biological membranes under physiological conditions presents a challenge and is not possible using conventional microscopy methods. Atomic force microscopy (AFM) provides an opportunity to study the organization of membrane proteins within biological membranes with sub-nanometer resolution. An example of a membrane protein organized into nanodomains is rhodopsin. Rhodopsin is expressed in photoreceptor cells of the retina and upon photoactivation initiates a series of biochemical reactions called phototransduction, which represents the first steps of vision. AFM has provided an opportunity to directly visualize the packing of rhodopsin in native retinal membranes and the quantitative analysis of AFM images is beginning to reveal insights about the nanodomain organization of rhodopsin in the membrane. In this report, we outline procedures for imaging rhodopsin nanodomains by AFM and the quantitative analysis of those AFM images.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Ramirez SA, Leidy C. Effect of the Organization of Rhodopsin on the Association between Transducin and a Photoactivated Receptor. J Phys Chem B 2018; 122:8872-8879. [PMID: 30156842 DOI: 10.1021/acs.jpcb.8b07401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After photoactivation, rhodopsin (R), a G-protein-coupled receptor, rapidly activates multiple transducin G-proteins (G) in an initial amplification step of phototransduction. G-protein activation requires diffusion-mediated association with an active rhodopsin (R*) at the rod disk membrane. Different organizations of R within the membrane have been revealded by several microscopy studies, including static and freely diffusing situations. However, it is unclear how such different scenarios influence the activation rate of G proteins. Through Monte Carlo simulations, we study the association reaction between a photoactivated rhodopsin and transducin under different reported receptor organizations including (a) R monomers diffusing freely, (b) R forming static dispersed crystalline domains made of rows of dimers, and (c) R arranged in static tracks formed by two adjacent rows of dimers. A key parameter in our simulations is the probability of binding following a collision ( p). For high p, the association rate between R* and G is higher in the freely diffusive system than in the static organizations, but for low collision efficiencies, the static organizations can result in faster association rates than the mobile system. We also observe that with low p, increasing the concentration of R increases the association rate significantly in the dispersed crystals configuration and just slightly in the free diffusive system. In summary, the lateral organization of rhodopsin influences the association rate between R* and G in a manner strongly dependent on the collision efficiency.
Collapse
Affiliation(s)
- Samuel A Ramirez
- Department of Pharmacology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 ; United States
| | - Chad Leidy
- Department of Physics , Universidad de los Andes , Bogotá 111711 , Colombia
| |
Collapse
|
9
|
Rakshit T, Senapati S, Parmar VM, Sahu B, Maeda A, Park PSH. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28645515 DOI: 10.1016/j.bbamcr.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations.
Collapse
Affiliation(s)
- Tatini Rakshit
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Periole X. Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chem Rev 2016; 117:156-185. [PMID: 28073248 DOI: 10.1021/acs.chemrev.6b00344] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are central to many fundamental cellular signaling pathways. They transduce signals from the outside to the inside of cells in physiological processes ranging from vision to immune response. It is extremely challenging to look at them individually using conventional experimental techniques. Recently, a pseudo atomistic molecular model has emerged as a valuable tool to access information on GPCRs, more specifically on their interactions with their environment in their native cell membrane and the consequences on their supramolecular organization. This approach uses the Martini coarse grain (CG) model to describe the receptors, lipids, and solvent in molecular dynamics (MD) simulations and in enough detail to allow conserving the chemical specificity of the different molecules. The elimination of unnecessary degrees of freedom has opened up large-scale simulations of the lipid-mediated supramolecular organization of GPCRs. Here, after introducing the Martini CGMD method, we review these studies carried out on various members of the GPCR family, including rhodopsin (visual receptor), opioid receptors, adrenergic receptors, adenosine receptors, dopamine receptor, and sphingosine 1-phosphate receptor. These studies have brought to light an interesting set of novel biophysical principles. The insights range from revealing localized and heterogeneous deformations of the membrane bilayer at the surface of the protein, specific interactions of lipid molecules with individual GPCRs, to the effect of the membrane matrix on global GPCR self-assembly. The review ends with an overview of the lessons learned from the use of the CGMD method, the biophysical-chemical findings on lipid-protein interplay.
Collapse
Affiliation(s)
- Xavier Periole
- Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
11
|
Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 2016; 473:3819-3836. [PMID: 27623775 DOI: 10.1042/bcj20160422] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.
Collapse
|
12
|
Koch KW, Dell'Orco D. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Front Mol Neurosci 2015; 8:67. [PMID: 26635520 PMCID: PMC4646965 DOI: 10.3389/fnmol.2015.00067] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023] Open
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona Verona, Italy
| |
Collapse
|
13
|
Dell'Orco D, Koch KW. Transient complexes between dark rhodopsin and transducin: circumstantial evidence or physiological necessity? Biophys J 2015; 108:775-7. [PMID: 25650944 DOI: 10.1016/j.bpj.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Daniele Dell'Orco
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Centre for BioMedical Computing, University of Verona, Verona, Italy.
| | - Karl-Wilhelm Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
14
|
Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 2015; 23:628-38. [PMID: 25728926 DOI: 10.1016/j.str.2015.01.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 12/23/2022]
Abstract
The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules.
Collapse
Affiliation(s)
- Monika Gunkel
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Johannes Schöneberg
- Computational Molecular Biology Group, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Weaam Alkhaldi
- German Center of Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stephan Irsen
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Frank Noé
- Computational Molecular Biology Group, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - Ashraf Al-Amoudi
- German Center of Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
15
|
Whited AM, Park PSH. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:26-34. [PMID: 25305340 DOI: 10.1016/j.bbamem.2014.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 01/31/2023]
Abstract
Biological membranes display distinct domains that organize membrane proteins and signaling molecules to facilitate efficient and reliable signaling. The organization of rhodopsin, a G protein-coupled receptor, in native rod outer segment disc membranes was investigated by atomic force microscopy. Atomic force microscopy revealed that rhodopsin is arranged into domains of variable size, which we refer to herein as nanodomains, in native membranes. Quantitative analysis of 150 disc membranes revealed that the physical properties of nanodomains are conserved in humans and mice and that the properties of individual disc membranes can be variable. Examining the variable properties of disc membranes revealed some of the factors contributing to the size of rod outer segment discs and the formation of nanodomains in the membrane. The diameter of rod outer segment discs was dependent on the number of rhodopsin molecules incorporated into the membrane but independent of the spatial density of rhodopsin. The number of nanodomains present in a single disc was also dependent on the number of rhodopsin molecules incorporated into the membrane. The size of the nanodomains was largely independent of the number or spatial density of rhodopsin in the membrane.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Invergo BM, Dell'Orco D, Montanucci L, Koch KW, Bertranpetit J. A comprehensive model of the phototransduction cascade in mouse rod cells. MOLECULAR BIOSYSTEMS 2014; 10:1481-9. [PMID: 24675755 DOI: 10.1039/c3mb70584f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.
Collapse
Affiliation(s)
- Brandon M Invergo
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
17
|
Jastrzebska B. GPCR: G protein complexes--the fundamental signaling assembly. Amino Acids 2013; 45:1303-14. [PMID: 24052187 DOI: 10.1007/s00726-013-1593-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022]
Abstract
G protein coupled receptors (GPCR) constitute the largest group of cell surface receptors that transmit various signals across biological membranes through the binding and activation of heterotrimeric G proteins, which amplify the signal and activate downstream effectors leading to the biological responses. Thus, the first critical step in this signaling cascade is the interaction between receptor and its cognate G protein. Understanding this critical event at the molecular level is of high importance because abnormal function of GPCRs is associated with many diseases. Thus, these receptors are targets for drug development.
Collapse
Affiliation(s)
- Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106-4965, USA,
| |
Collapse
|
18
|
Dell'Orco D. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Lett 2013; 587:2060-6. [PMID: 23684654 DOI: 10.1016/j.febslet.2013.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Vertebrate vision in rod photoreceptors begins when a photon hits the visual pigment rhodopsin (Rh) and triggers the phototransduction cascade. Although the fine biochemical and biophysical details of this paradigmatic signalling pathway have been studied for decades, phototransduction still presents unclear mechanistic aspects. Increasing lines of evidence suggest that the visual pigment rhodopsin (Rh) is natively organized in dimers on the surface of disc membranes, and may form higher order "paracrystalline" assemblies, which are not easy to reconcile with the classical collision-coupling mechanistic scenario evoked to explain the extremely fast molecular processes required in phototransduction. The questioned and criticized existence of paracrystalline Rh rafts can be fully accepted only if it can be explained in functional terms by a solid mechanistic picture. Here we discuss how recent data suggest a physiological role for supramolecular assemblies of Rh and its cognate G protein transducin (Gt), which by forming transient complexes in the dark may ensure rapid activation of the cascade even in a crowded environment that, according to the classical picture, would otherwise stop the cascade.
Collapse
Affiliation(s)
- Daniele Dell'Orco
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, and Centre for Biomedical Computing, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|