1
|
Bhasne K, Jain N, Karnawat R, Arya S, Majumdar A, Singh A, Mukhopadhyay S. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics. J Phys Chem B 2020; 124:708-717. [PMID: 31917569 DOI: 10.1021/acs.jpcb.9b09118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Synuclein is an intrinsically disordered protein that adopts an α-helical structure upon binding to the negatively charged lipid membrane. Binding-induced conformational change of α-synuclein plays a crucial role in the regulation of synaptic plasticity. In this work, we utilized the fluorescence depolarization kinetics methodology to gain the site-specific dynamical insights into the membrane-bound α-synuclein. We took advantage of the nonoccurrence of Cys in α-synuclein and created single-Cys variants at different sites for us to be able to label it with a thiol-active fluorophore. Our fluorescence depolarization results reveal the presence of three dynamically distinct types of motions of α-synuclein on POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) small unilamellar vesicles (SUVs): (i) the (local) wobbling-in-cone motion of the fluorophore on the subnanosecond timescale, (ii) the backbone segmental mobility on the nanosecond timescale, and (iii) a slow depolarization component with a characteristic long rotational correlation time (∼60 ns) that is independent of the residue position. This characteristic timescale could potentially arise due to global tumbling of the protein-membrane complex, the global reorientation of only the protein within the membrane, and/or the translation diffusion of the protein on the curved membrane surface that could result in fluorescence depolarization due to the angular displacement of the transition dipole. In order to discern the molecular origin of the characteristic long rotational correlation time, we then carried our depolarization experiments varying the curvature of the membrane and varying the binding affinity by changing the lipid headgroup. These experiments revealed that the long rotational correlation time primarily arises due to the translational diffusion of α-synuclein on the curved membrane surface with a diffusion coefficient of ∼8.7 × 10-10 m2/s. The site-specific fluorescence depolarization methodology will find broad application in quantifying diffusion of a wide range of membrane-associated proteins involved in functions and diseases.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Neha Jain
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Rishabh Karnawat
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Shruti Arya
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anubhuti Singh
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| |
Collapse
|
2
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
3
|
Abstract
Intrinsically disordered proteins play vital roles in biology, and their dysfunction contributes to many major disease states. These proteins remain challenging targets for rational ligand discovery or drug design because they are highly dynamic and fluctuate through a diverse set of conformations, frustrating structure-based approaches. To meet this challenge, we have developed protocols to efficiently identify active small molecule ligands of disordered proteins. Our approach utilizes enhanced sampling molecular dynamics and conformational analysis approaches optimized for disordered targets, coupled with computational docking and machine learning-based screens of compound libraries. By applying this protocol to an amyloid-forming segment of microtubule-associated protein tau, we successfully identified novel, chemically diverse tau ligands, including an inhibitor that delays the aggregation reaction in vitro without affecting the amount of aggregate formed at the steady state. Our results indicate that we have expanded the toolkit of protein aggregation inhibitors into new areas of chemical space and demonstrate the feasibility of our ligand discovery strategy.
Collapse
Affiliation(s)
- David W Baggett
- Department of Medicinal Chemistry , University of Washington , 1959 Northeast Pacific Street , Box 357610, Seattle , Washington 98195 , United States
| | - Abhinav Nath
- Department of Medicinal Chemistry , University of Washington , 1959 Northeast Pacific Street , Box 357610, Seattle , Washington 98195 , United States
| |
Collapse
|
4
|
Bhasne K, Mukhopadhyay S. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Proteomics 2018; 18:e1800059. [PMID: 30216674 DOI: 10.1002/pmic.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Protein misfolding resulting in the formation of ordered amyloid aggregates is associated with a number of devastating human diseases. Intrinsically disordered proteins (IDPs) do not autonomously fold up into a unique stable conformation and remain as an ensemble of rapidly fluctuating conformers. Many IDPs are prone to convert into the β-rich amyloid state. One such amyloidogenic IDP is α-synuclein that is involved in Parkinson's disease. Recent studies have indicated that other neuronal proteins, especially IDPs, can co-aggregate with α-synuclein in many pathological ailments. This article describes several such observations highlighting the role of heterotypic protein-protein interactions in the formation of hetero-amyloids. It is believed that the characterizations of molecular cross talks between amyloidogenic proteins as well as the mechanistic studies of heterotypic protein aggregation will allow us to decipher the role of the interacting proteins in amyloid proteomics.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Teunissen AJP, Pérez-Medina C, Meijerink A, Mulder WJM. Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev 2018; 47:7027-7044. [PMID: 30091770 PMCID: PMC6441672 DOI: 10.1039/c8cs00278a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Supramolecular systems have applications in areas as diverse as materials science, biochemistry, analytical chemistry, and nanomedicine. However, analyzing such systems can be challenging due to the wide range of time scales, binding strengths, distances, and concentrations at which non-covalent phenomena take place. Due to their versatility and sensitivity, Förster resonance energy transfer (FRET)-based techniques are excellently suited to meet such challenges. Here, we detail the ways in which FRET has been used to study non-covalent interactions in both synthetic and biological supramolecular systems. Among other topics, we examine methods to measure molecular forces, determine protein conformations, monitor assembly kinetics, and visualize in vivo drug release from nanoparticles. Furthermore, we highlight multiplex FRET techniques, discuss the field's limitations, and provide a perspective on new developments.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Andries Meijerink
- Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Laboratory of Chemical biology, Department of Biomedical Engineering and Institute for Complex Molecular systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Bhasne K, Sebastian S, Jain N, Mukhopadhyay S. Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau. J Mol Biol 2018; 430:2508-2520. [PMID: 29704492 DOI: 10.1016/j.jmb.2018.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022]
Abstract
Amyloidogenic intrinsically disordered proteins, α-synuclein and tau are linked to Parkinson's disease and Alzheimer's disease, respectively. A body of evidence suggests that α-synuclein and tau, both present in the presynaptic nerve terminals, co-aggregate in many neurological ailments. The molecular mechanism of α-synuclein-tau hetero-assembly is poorly understood. Here we show that amyloid formation is synergistically facilitated by heterotypic association mediated by binding-induced misfolding of both α-synuclein and tau K18. We demonstrate that the intermolecular association is largely driven by the electrostatic interaction between the negatively charged C-terminal segment of α-synuclein and the positively charged tau K18 fragment. This heterotypic association results in rapid formation of oligomers that readily mature into hetero-fibrils with a much shorter lag phase compared to the individual proteins. These findings suggested that the critical intermolecular interaction between α-synuclein and tau can promote facile amyloid formation that can potentially lead to efficient sequestration of otherwise long-lived lethal oligomeric intermediates into innocuous fibrils. We next show that a well-known familial Parkinson's disease mutant (A30P) that is known to aggregate slowly via accumulation of highly toxic oligomeric species during the long lag phase converts into amyloid fibrils significantly faster in the presence of tau K18. The early intermolecular interaction profoundly accelerates the fibrillation rate of A30P α-synuclein and impels the disease mutant to behave similar to wild-type α-synuclein in the presence of tau. Our findings suggest a mechanistic underpinning of bypassing toxicity and suggest a general strategy by which detrimental amyloidogenic precursors are efficiently sequestered into more benign amyloid fibrils.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Sanjana Sebastian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Neha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Present address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
7
|
Battisti A, Ciasca G, Grottesi A, Tenenbaum A. Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors. Phys Chem Chem Phys 2017; 19:8435-8446. [DOI: 10.1039/c6cp07683a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first quantitative assessment of the entropic, hydrophobic, and structural factors producing the thermal compaction of tau, an intrinsically disordered protein.
Collapse
Affiliation(s)
- Anna Battisti
- International School for Advanced Studies (SISSA)
- 34136 Trieste
- Italy
| | | | | | | |
Collapse
|
8
|
Sierecki E, Giles N, Bowden Q, Polinkovsky ME, Steinbeck J, Arrioti N, Rahman D, Bhumkar A, Nicovich PR, Ross I, Parton RG, Böcking T, Gambin Y. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence. Sci Rep 2016; 6:37630. [PMID: 27892477 PMCID: PMC5385372 DOI: 10.1038/srep37630] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Quill Bowden
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Mark E. Polinkovsky
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Janina Steinbeck
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Nicholas Arrioti
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Diya Rahman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Ian Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| |
Collapse
|
9
|
Shi F, Kouadir M, Yang Y. NALP3 inflammasome activation in protein misfolding diseases. Life Sci 2015; 135:9-14. [DOI: 10.1016/j.lfs.2015.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/09/2015] [Accepted: 05/03/2015] [Indexed: 01/26/2023]
|
10
|
Basak S, Chattopadhyay K. Studies of protein folding and dynamics using single molecule fluorescence spectroscopy. Phys Chem Chem Phys 2014; 16:11139-49. [DOI: 10.1039/c3cp55219e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Abstract
Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP-membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration-approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.
Collapse
|
12
|
Wang L, Zhai YQ, Xu LL, Qiao C, Sun XL, Ding JH, Lu M, Hu G. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp Neurol 2013; 251:22-9. [PMID: 24220636 DOI: 10.1016/j.expneurol.2013.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD), one of the most common neurodegenerative diseases, is characterized by the loss of dopaminergic neurons in the substantia nigra. Increasing epidemiological evidence has indicated that type 2 diabetes (T2D) may be implicated in the pathogenesis of PD. However, the exact association and the underlying mechanism remain unclear. In the present study, ob/ob and db/db mice, the well accepted T2D models, were acutely treated with MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) to mimic PD-like neural injury. We found that insulin signaling impairment occurred not only in pancreas and livers, but also in the midbrain of ob/ob and db/db mice. Notably, the expressions of monomeric and oligomeric α-synuclein as well as endoplasmic reticulum stress markers (CHOP and GRP78) were significantly upregulated in both pancreas and midbrain of T2D mice, accompanied by the increased activation of NLRP3 inflammasomes to produce excess IL-1β. Furthermore, we found that acute MPTP administration aggravated the loss of dopaminergic neurons and increased the activation of glial cells in the substantia nigra of db/db mice. Collectively, these findings demonstrate that α-synuclein accumulation and neuroinflammation are aggravated in the midbrain of T2D mice and T2D mice are more susceptible to the neurotoxicity induced by MPTP. Our study indicates that metabolic inflammation exacerbates DA neuronal degeneration in the progress of PD, which will provide a novel insight into the etiology of PD.
Collapse
Affiliation(s)
- Ling Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Ying-Qi Zhai
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
13
|
The many faces of proteins. FEBS Lett 2013; 587:995-6. [DOI: 10.1016/j.febslet.2013.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|