1
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Luo W, Wang J, Sun L, Li R, Wu D, Tang J, Zhang J, Geng F. Metabolome analysis shows that ultrasound enhances the lethality of chlorine dioxide against Salmonella enterica subsp. Enterica by disrupting its material and energy metabolism. Food Res Int 2022; 162:112135. [DOI: 10.1016/j.foodres.2022.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
3
|
Shao L, Liu Y, Zhao Y, Zou B, Li X, Dai R. Integrated transcriptomic and metabolomic analysis of the global response of Staphylococcus aureus to ohmic heating. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Tang R, Wen J, Stote RE, Sun Y. Cyanuric Chloride-Based Reactive Dyes for Use in the Antimicrobial Treatments of Polymeric Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1524-1534. [PMID: 33378153 DOI: 10.1021/acsami.0c18613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study reports a simple and practical method to introduce antimicrobial and biofilm-controlling functions into hydroxyl- or amino-containing polymers such as cellulose using compounds derived from widely used reactive dyes. Two dichloro-s-triazine-based dyes, reactive blue 4 and sodium 4-(4,6-dichloro-1,3,5-triazinylamino)-benzenesulfonate (a colorless reactive "dye"), were covalently attached to cellulose at room temperature by replacing one chloride on the dyes with the hydroxyl groups on cellulose followed by hydrolysis under alkaline conditions to transform the remaining chloride into hydroxyl groups. The chemical reactions were confirmed by FT-IR studies, energy-dispersive X-ray spectroscopy, water contact angle measurement, and zeta potential analysis. The resulting cellulose provided powerful antimicrobial activities against Staphylococcus epidermidis (S. epidermidis, ATCC 35984, Gram-positive bacteria), Escherichia coli (E. coli, ATCC 15597, Gram-negative bacteria), and Candida albicans (C. albicans, ATCC 10231, yeast) and effectively prevented the formation of bacterial or fungal biofilms. The minimum inhibition concentrations of the hydrolyzed dyes were similar to that of phenol. In the zone of inhibition studies using phenolic compounds as positive controls, the hydrolyzed dyes and their model compound cyanuric acid demonstrated antimicrobial functions, suggesting that the antimicrobial activities were associated with the phenol-like hydroxyl groups on the triazine rings. Antimicrobial mechanism investigation indicated that the phenol-like structures on the dyed cellulose caused microbial lysis and leakage of intracellular components. The antimicrobial functions were durable upon repeated washing, and the dyed cellulose showed outstanding biocompatibility toward mammalian cells.
Collapse
Affiliation(s)
- Ruogu Tang
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jianchuan Wen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Robert E Stote
- U.S. Army CCDC-SC, General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
5
|
Fernandez M, Paulucci NS, Reynoso E, Morales GM, Agostini E, González PS. Morphological and structural response of Bacillus sp. SFC 500-1E after Cr(VI) and phenol treatment. J Basic Microbiol 2020; 60:679-690. [PMID: 32378234 DOI: 10.1002/jobm.202000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Bacillus sp. SFC 500-1E, a bacterial strain isolated from tannery sediments, is able to remove Cr(VI) and simultaneously tolerate high concentrations of phenol. In this study, we used high-resolution microscopies, fluorescence polarization techniques, and several biochemical approaches to improve our understanding about the adaptive mechanisms of this strain to survive in the presence of Cr(VI) and phenol, both individually and simultaneously. Among adaptive strategies developed by Bacillus sp. SFC 500-1E, an increase in bacterial size, such as length, width, and height, and ultrastructural alterations, such as electron-dense precipitates, the presence of exopolymers, and cell lysis, are noteworthy. The exopolymers observed were consistent with the extensive biofilm formation and exopolysaccharides and extracellular protein quantification. At the cell membrane level, a rapid rigidity was induced in Cr(VI) + phenol treatment. This effect was counteracted after 16 h by changes at the level of phospholipids, mainly in the composition of fatty acids (FAs); in particular, an increase in the unsaturated fatty acid/saturated fatty acid ratio was detected. This study shows evidence of some adaptive responses displayed by Bacillus sp. SFC 500-1E, which allows it to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Gao X, Liu W, Mei J, Xie J. Quantitative Analysis of Cold Stress Inducing Lipidomic Changes in Shewanella putrefaciens Using UHPLC-ESI-MS/MS. Molecules 2019; 24:E4609. [PMID: 31888284 PMCID: PMC6943694 DOI: 10.3390/molecules24244609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Shewanella putrefaciens is a well-known specific spoilage organism (SSO) and cold-tolerant microorganism in refrigerated fresh marine fish. Cold-adapted mechanism includes increased fluidity of lipid membranes by the ability to finely adjust lipids composition. In the present study, the lipid profile of S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C was explored using ultra-high-pressure liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to discuss the effect of lipid composition on cold-adapted tolerance. Lipidomic analysis detected a total of 27 lipid classes and 606 lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. S. putrefaciens cultivated at 30 °C (SP-30) had significantly higher content of glycerolipids, sphingolipids, saccharolipids, and fatty acids compared with that at 0 °C (SP-0); however, the lower content of phospholipids (13.97%) was also found in SP-30. PE (30:0), PE (15:0/15:0), PE (31:0), PA (33:1), PE (32:1), PE (33:1), PE (25:0), PC (22:0), PE (29:0), PE (34:1), dMePE (15:0/16:1), PE (31:1), dMePE (15:1/15:0), PG (34:2), and PC (11:0/11:0) were identified as the most abundant lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. The increase of PG content contributes to the construction of membrane lipid bilayer and successfully maintains membrane integrity under cold stress. S. putrefaciens cultivated at low temperature significantly increased the total unsaturated liquid contents but decreased the content of saturated liquid contents.
Collapse
Affiliation(s)
- Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
7
|
Sanina N, Pomazenkova L, Bakholdina S, Chopenko N, Zabolotnaya A, Reutov V, Stenkova A, Bystritskaya E, Bogdanov M. Relationship between Adaptive Changing of Lysophosphatidylethanolamine Content in the Bacterial Envelope and Ampicillin Sensitivity of Yersinia pseudotuberculosis. J Mol Microbiol Biotechnol 2019; 28:236-239. [PMID: 30844797 DOI: 10.1159/000497180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The low permeability of porin channels is the possible reason for Gram-negative bacterial resistance to antibiotics. The adaptive accumulation of lysophosphatidylethanolamine (LPE) in Yersinia pseudotuberculosis induces conformational changes of OmpF porin that may hinder the transport of antibiotics through this channel. The present study was aimed to test whether the changes in LPE content affect the resistance of bacteria to ampicillin. The addition of glucose to the culture medium was shown to simultaneously increase the level of LPE and minimum inhibitory concentration (MIC) for ampicillin of Y. pseudotuberculosis cells 6- and 2-fold, respectively. However, the coadministration of glucose and polyphenol extract from buckwheat husks reduced the content of LPE 2-fold and restored MIC to the control value. Thus, PBEH can be used as antibiotic adjuvant to improve an antibiotic's ability to cross the outer membrane. The present work demonstrated: (i) the role of adaptive changes in the lipid composition of Y. pseudotuberculosis in the development of antibiotic resistance, and (ii) the promising use of PBEH in combination therapy to increase the susceptibility of Gram-negative bacteria to the conventional β-lactam antibiotics, probably attenuating in vivo a previously demonstrated effect of LPE on the conformation and function of the OmpF channel.
Collapse
Affiliation(s)
- Nina Sanina
- Far Eastern Federal University, Vladivostok, Russian Federation,
| | | | - Svetlana Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russian Federation
| | | | | | - Vladimir Reutov
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - Anna Stenkova
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - Evgeniya Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russian Federation
| | - Mikhail Bogdanov
- University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
8
|
Changes in the lipid composition of Bradyrhizobium cell envelope reveal a rapid response to water deficit involving lysophosphatidylethanolamine synthesis from phosphatidylethanolamine in outer membrane. Res Microbiol 2018; 169:303-312. [DOI: 10.1016/j.resmic.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
|
9
|
Rokitskaya TI, Kotova EA, Naberezhnykh GA, Khomenko VA, Gorbach VI, Firsov AM, Zelepuga EA, Antonenko YN, Novikova OD. Single channel activity of OmpF-like porin from Yersinia pseudotuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:883-91. [PMID: 26854962 DOI: 10.1016/j.bbamem.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
To gain a mechanistic insight in the functioning of the OmpF-like porin from Yersinia pseudotuberculosis (YOmpF), we compared the effect of pH variation on the ion channel activity of the protein in planar lipid bilayers and its binding to lipid membranes. The behavior of YOmpF channels upon acidification was similar to that previously described for Escherichia coli OmpF. In particular, a decrease in pH of the bathing solution resulted in a substantial reduction of YOmpF single channel conductance, accompanied by the emergence of subconductance states. Similar subconductance substates were elicited by the addition of lysophosphatidylcholine. This observation, made with porin channels for the first time, pointed to the relevance of lipid-protein interactions, in particular, the lipid curvature stress, to the appearance of subconductance states at acidic pH. Binding of YOmpF to membranes displayed rather modest dependence on pH, whereas the channel-forming potency of the protein tremendously decreased upon acidification.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia
| | - Gennadiy A Naberezhnykh
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Valentina A Khomenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Vladimir I Gorbach
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1/73, Moscow 119991, Russia
| | - Elena A Zelepuga
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow 119991, Russia.
| | - Olga D Novikova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia.
| |
Collapse
|
10
|
Effects of elevated growth temperature and heat shock on the lipid composition of the inner and outer membranes of Yersinia pseudotuberculosis. Biochimie 2016; 123:103-9. [PMID: 26853818 DOI: 10.1016/j.biochi.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/02/2016] [Indexed: 11/23/2022]
Abstract
Differences in the distribution of individual phospholipids between the inner (IM) and outer membranes (OM) of gram-negative bacteria have been detected in mesophilic Escherichia, Erwinia and Salmonella species but have never been investigated in the psychrotrophic Yersinia genus. Therefore, the influence of an elevated growth temperature and heat shock on the phospholipid and fatty acid (FA) compositions of the fractionated Yersinia pseudotuberculosis envelope was investigated. The shift of the growth temperature from 8 °C to 37 °C to mimic the switch from saprophytic to parasitic growth of this bacteria and the exposure of the cells to heat shock, which was induced by a sharp increase in the temperature from 8 °C to 45 °C, increased the lysophosphatidylethanolamine content from zero and 1% to 6% and 10% in the IM and OM, respectively. These changes were accompanied by a decrease in the phosphatidylethanolamine (PE) content and a drastic increase (up to 3-fold higher) in the phosphatidylglycerol (PG) level in the OM of the bacteria, which increases the net negative charge of the cell envelope. The levels of the predominant saturated palmitic (16:0) and cyclopropane FAs were approximately 1.5- and 7.5-fold higher, respectively, but the content of the predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was approximately 10-30-fold lower in both membranes that were isolated from the cells grown at elevated temperatures. Due to these changes, reflecting the process of "homeoviscous adaptation", the ratio between the unsaturated and saturated FAs decreased but remained higher in the IM than that in the OM. Simultaneously, no significant changes were observed in the FA composition of cells subjected to heat shock, demonstrating a difference between the responses of the heat-shocked and heat-adapted Y. pseudotuberculosis. The unique ability of Y. pseudotuberculosis to reciprocally regulate the ratio of anionic PG and net neutral PE and therefore adjust the negative charge of the OM may be a common strategy used by pathogenic bacteria to promote the barrier function of the OM.
Collapse
|
11
|
Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. J Proteomics 2015; 122:11-25. [PMID: 25829261 DOI: 10.1016/j.jprot.2015.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED To increase the efficiency of biocatalysts a thorough understanding of the molecular response of the biocatalyst to precursors, products and environmental conditions applied in bioconversions is essential. Here we performed a comprehensive proteome and phospholipid analysis to characterize the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. Using complementary quantitative proteomics approaches we were able to identify and quantify 1467 proteins, corresponding to 28% of the total KT2440 proteome. 256 proteins were altered in abundance in response to n-butanol. The proteome response entailed an increased abundance of enzymes involved in n-butanol degradation including quinoprotein alcohol dehydrogenases, aldehyde dehydrogenases and enzymes of fatty acid beta oxidation. From these results we were able to construct a pathway for the metabolism of n-butanol in P. putida. The initial oxidation of n-butanol is catalyzed by at least two quinoprotein ethanol dehydrogenases (PedE and PedH). Growth of mutants lacking PedE and PedH on n-butanol was significantly impaired, but not completely inhibited, suggesting that additional alcohol dehydrogenases can at least partially complement their function in KT2440. Furthermore, phospholipid profiling revealed a significantly increased abundance of lyso-phospholipids in response to n-butanol, indicating a rearrangement of the lipid bilayer. BIOLOGICAL SIGNIFICANCE n-butanol is an important bulk chemical and a promising alternative to gasoline as a transportation fuel. Due to environmental concerns as well as increasing energy prices there is a growing interest in sustainable and cost-effective biotechnological production processes for the production of bulk chemicals and transportation fuels from renewable resources. n-butanol fermentation is well established in Clostridiae, but the efficiency of n-butanol production is mainly limited by its toxicity. Therefore bacterial strains with higher intrinsic tolerance to n-butanol have to be selected as hosts for n-butanol production. Pseudomonas bacteria are metabolically very versatile and exhibit a high intrinsic tolerance to organic solvents making them suitable candidates for bioconversion processes. A prerequisite for a potential production of n-butanol in Pseudomonas bacteria is a thorough understanding of the molecular adaption processes caused by n-butanol and the identification of enzymes involved in n-butanol metabolization. This work describes the impact of n-butanol on the proteome and the phospholipid composition of the reference strain P. putida KT2440. The high proteome coverage of our proteomics survey allowed us to reconstruct the degradation pathway of n-butanol and to monitor the changes in the energy metabolism of KT2440 induced by n-butanol. Key enzymes involved in n-butanol degradation identified in study will be interesting targets for optimization of n-butanol production in Pseudomonads. The present work and the identification of key enzymes involved in butanol metabolism may serve as a fundament to develop new or improve existing strategies for the biotechnological production of the next-generation biofuel n-butanol in Pseudomonads.
Collapse
|