1
|
Yoo BK, Lambry JC, Negrerie M. Controlling the trans effect induced by nitric oxide and carbon monoxide: H93C myoglobin versus H-NOX sensors and soluble guanylate cyclase. Protein Sci 2024; 33:e5231. [PMID: 39576123 PMCID: PMC11583245 DOI: 10.1002/pro.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Myoglobin (Mb) has been engineered to replace the proximal histidine (His93) with a cysteine in order to investigate the trans effect induced by diatomic ligands using time-resolved electronic absorption spectroscopy. This single mutation induces a change of heme coordination state and bonding character which change carbon monoxide (CO) and nitric oxide (NO) dynamics. In H93C Mb the increased Fe2+-S distance weakens this bond which is replaced with a distal Fe2+-His64 ligation. We measured dynamics very different from wild type Mb but similar with those measured in soluble guanylate cyclase (sGC). Whereas NO induces a direct negative trans effect, the strain on His64 ligation is sufficient to counteract the positive trans effect due to CO. After photodissociation, geminate recombination of NO to the transient 4-coordinate heme of H93C occurred with a fast time constant (6.9 ps) identical to that in sGC. Remarkably, we also observed picosecond geminate rebinding of CO to H93C Mb, similarly with sGC in the simultaneous presence of CO and an allosteric stimulator. This CO rebinding dynamics to the 4c-heme in H93C Mb was never measured in other Mb mutants and demonstrates the existence of 5-coordinate heme with CO, explaining the synergistic activation of sGC in presence of CO and a stimulator.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
2
|
Balasco N, Alba J, D'Abramo M, Vitagliano L. Quaternary Structure Transitions of Human Hemoglobin: An Atomic-Level View of the Functional Intermediate States. J Chem Inf Model 2021; 61:3988-3999. [PMID: 34375114 PMCID: PMC9473481 DOI: 10.1021/acs.jcim.1c00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human hemoglobin (HbA) is one of the prototypal systems used to investigate structure-function relationships in proteins. Indeed, HbA has been used to develop the basic concepts of protein allostery, although the atomic-level mechanism underlying the HbA functionality is still highly debated. This is due to the fact that most of the three-dimensional structural information collected over the decades refers to the endpoints of HbA functional transition with little data available for the intermediate states. Here, we report molecular dynamics (MD) simulations by focusing on the relevance of the intermediate states of the protein functional transition unraveled by the crystallographic studies carried out on vertebrate Hbs. Fully atomistic simulations of the HbA T-state indicate that the protein undergoes a spontaneous transition toward the R-state. The inspection of the trajectory structures indicates that the protein significantly populates the intermediate HL-(C) state previously unraveled by crystallography. In the structural transition, it also assumes the intermediate states crystallographically detected in Antarctic fish Hbs. This finding suggests that HbA and Antarctic fish Hbs, in addition to the endpoints of the transitions, also share a similar deoxygenation pathway despite a distace of hundreds of millions of years in the evolution scale. Finally, using the essential dynamic sampling methodology, we gained some insights into the reverse R to T transition that is not spontaneously observed in classic MD simulations.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Josephine Alba
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome Sapienza, P.le A.Moro 5, 00185 Rome, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
3
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
4
|
Xu GG, Deshpande TM, Ghatge MS, Mehta AY, Omar ASM, Ahmed MH, Venitz J, Abdulmalik O, Zhang Y, Safo MK. Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Prodrugs as Drug Candidates for the Treatment of Ischemic Disorders: Insights into NO-Releasing Prodrug Biotransformation and Hemoglobin-NO Biochemistry. Biochemistry 2015; 54:7178-92. [PMID: 26582149 DOI: 10.1021/acs.biochem.5b01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed novel nitric oxide (NO)-releasing prodrugs of efaproxiral (RSR13) for their potential therapeutic applications in a variety of diseases with underlying ischemia. RSR13 is an allosteric effector of hemoglobin (Hb) that decreases the protein's affinity for oxygen, thereby increasing tissue oxygenation. NO, because of its vasodilatory property, in the form of ester prodrugs has been found to be useful in managing several cardiovascular diseases by increasing blood flow and oxygenation in ischemic tissues. We synthesized three NO-donor ester derivatives of RSR13 (DD-1, DD-2, and DD-3) by attaching the NO-releasing moieties nitrooxyethyl, nitrooxypropyl, and 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, respectively, to the carboxylate of RSR13. In vitro studies demonstrated that the compounds released NO in a time-dependent manner upon being incubated with l-cysteine (1.8-9.3%) or human serum (2.3-52.5%) and also reduced the affinity of Hb for oxygen in whole blood (ΔP50 of 4.9-21.7 mmHg vs ΔP50 of 25.4-32.1 mmHg for RSR13). Crystallographic studies showed RSR13, the hydrolysis product of the reaction between DD-1 and deoxygenated Hb, bound to the central water cavity of Hb. Also, the hydrolysis product, NO, was observed exclusively bound to the two α hemes, the first such HbNO structure to be reported, capturing the previously proposed physiological bis-ligated nitrosylHb species. Finally, nitrate was observed bound to βHis97. Ultraperformance liquid chromatography-mass spectrometry analysis of the compounds incubated with matrices used for the various studies demonstrated the presence of the predicted reaction products. Our findings, beyond the potential therapeutic application, provide valuable insights into the biotransformation of NO-releasing prodrugs and their mechanism of action and into hemoglobin-NO biochemistry at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Abdel Sattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University , Alsulaymanyah, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University , Cairo 11884, Egypt
| | | | | | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
5
|
Arcon JP, Rosi P, Petruk AA, Marti MA, Estrin DA. Molecular Mechanism of Myoglobin Autoxidation: Insights from Computer Simulations. J Phys Chem B 2015; 119:1802-13. [DOI: 10.1021/jp5093948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. P. Arcon
- Departamento
de Química Inorgánica, Analítica y Química
Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón
2, C1428EHA, Ciudad
de Buenos Aires, Argentina
| | - P. Rosi
- Departamento
de Química Inorgánica, Analítica y Química
Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - A. A. Petruk
- Departamento
de Química Inorgánica, Analítica y Química
Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - M. A. Marti
- Departamento
de Química Inorgánica, Analítica y Química
Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón
2, C1428EHA, Ciudad
de Buenos Aires, Argentina
| | - D. A. Estrin
- Departamento
de Química Inorgánica, Analítica y Química
Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Yi J, Soares AS, Richter-Addo GB. Crystallographic characterization of the nitric oxide derivative of R-state human hemoglobin. Nitric Oxide 2014; 39:46-50. [PMID: 24769418 DOI: 10.1016/j.niox.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is a signaling agent that is biosynthesized in vivo. NO binds to the heme center in human hemoglobin (Hb) to form the HbNO adduct. This reaction of NO with Hb has been studied for many decades. Of continued interest has been the effect that the bound NO ligand has on the geometrical parameters of the resulting heme-NO active site. Although the crystal structure of a T-state human HbNO complex has been published previously, that of the high affinity R-state HbNO derivative has not been reported to date. We have crystallized and solved the three-dimensional X-ray structure of R-state human HbNO to 1.90 Å resolution. The differences in the FeNO bond parameters and H-bonding patterns between the α and β subunits contribute to understanding of the observed enhanced stability of the α(FeNO) moieties relative to the β(FeNO) moieties in human R-state HbNO.
Collapse
Affiliation(s)
- Jun Yi
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; Department of Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Alexei S Soares
- Macromolecular Crystallography Research Resource, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|