1
|
Jana M, Dasarathy S, Ghosh S, Pahan K. Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054652. [PMID: 36902085 PMCID: PMC10002578 DOI: 10.3390/ijms24054652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB-CBP pathway. It may be of benefit for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
2
|
Gottschalk G, Peterson D, Knox K, Maynard M, Whelan RJ, Roy A. Elevated ATG13 in serum of patients with ME/CFS stimulates oxidative stress response in microglial cells via activation of receptor for advanced glycation end products (RAGE). Mol Cell Neurosci 2022; 120:103731. [PMID: 35487443 DOI: 10.1016/j.mcn.2022.103731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022] Open
Abstract
Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a multisystem illness characterized by extreme muscle fatigue associated with pain, neurocognitive impairment, and chronic inflammation. Despite intense investigation, the molecular mechanism of this disease is still unknown. Here we demonstrate that autophagy-related protein ATG13 is strongly upregulated in the serum of ME/CFS patients, indicative of impairment in the metabolic events of autophagy. A Thioflavin T-based protein aggregation assay, array screening for autophagy-related factors, densitometric analyses, and confirmation with ELISA revealed that the level of ATG13 was strongly elevated in serum samples of ME/CFS patients compared to age-matched controls. Moreover, our microglia-based oxidative stress response experiments indicated that serum samples of ME/CFS patients evoke the production of reactive oxygen species (ROS) and nitric oxide in human HMC3 microglial cells, whereas neutralization of ATG13 strongly diminishes the production of ROS and NO, suggesting that ATG13 plays a role in the observed stress response in microglial cells. Finally, an in vitro ligand binding assay provided evidence that ATG13 employs the Receptor for Advanced Glycation End-products (RAGE) to stimulate ROS in microglial cells. Collectively, our results suggest that an impairment of autophagy following the release of ATG13 into serum could be a pathological signal in ME/CFS.
Collapse
Affiliation(s)
- Gunnar Gottschalk
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, United States of America; Simmaron R&D lab, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI 53226, United States of America
| | - Daniel Peterson
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, United States of America
| | - Konstance Knox
- Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186., United States of America
| | - Marco Maynard
- Simmaron R&D lab, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI 53226, United States of America
| | - Ryan J Whelan
- Simmaron R&D lab, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI 53226, United States of America
| | - Avik Roy
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, United States of America; Simmaron R&D lab, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI 53226, United States of America.
| |
Collapse
|
3
|
Park S, Kim A, Park G, Kwon O, Park S, Yoo H, Jang J. Investigation of Therapeutic Response Markers for Acupuncture in Parkinson's Disease: An Exploratory Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11091697. [PMID: 34574038 PMCID: PMC8468821 DOI: 10.3390/diagnostics11091697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
In this preliminary pilot study, we investigated the specific genes implicated in the therapeutic response to acupuncture in patients with Parkinson’s disease (PD). Transcriptome alterations following acupuncture in blood samples collected during our previous clinical trial were analyzed along with the clinical data of six patients with PD, of which a representative patient was selected for transcriptomic analysis following acupuncture. We also examined the changes in the expression of PD biomarker genes known to be dysregulated in both the brain and blood of patients with PD. We validated these gene expression changes using quantitative real-time polymerase chain reaction (qPCR) in the blood of the remaining five patients with PD who received acupuncture treatment. Following acupuncture treatment, the transcriptomic alterations in the representative patient were similar to those induced by dopaminergic therapy. Among the PD biomarkers, ankyrin repeat domain 22 (ANKRD22), upregulated following dopaminergic therapy, and synapsin 1 (SYN1), a common gene marker for synaptic dysfunction in PD, were upregulated following acupuncture. These alterations correlated with changes in gait parameters in patients with PD. Our data suggest ANKRD22 and SYN1 as potential biomarkers to predict/monitor therapeutic responses to acupuncture in patients with PD, especially in those with gait disturbance. Further research is needed to confirm these findings in a large sample of patients with PD.
Collapse
Affiliation(s)
- Sangmin Park
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea;
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si 58245, Korea;
| | - Ojin Kwon
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Sangsoo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
| | - Horyong Yoo
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| | - Junghee Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| |
Collapse
|
4
|
Carleial S, Nätt D, Unternährer E, Elbert T, Robjant K, Wilker S, Vukojevic V, Kolassa IT, Zeller AC, Koebach A. DNA methylation changes following narrative exposure therapy in a randomized controlled trial with female former child soldiers. Sci Rep 2021; 11:18493. [PMID: 34531495 PMCID: PMC8445994 DOI: 10.1038/s41598-021-98067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The aftermath of traumatization lives on in the neural and epigenetic traces creating a momentum of affliction in the psychological and social realm. Can psychotherapy reorganise these memories through changes in DNA methylation signatures? Using a randomised controlled parallel group design, we examined methylome-wide changes in saliva samples of 84 female former child soldiers from Eastern DR Congo before and six months after Narrative Exposure Therapy. Treatment predicted differentially methylated positions (DMPs) related to ALCAM, RIPOR2, AFAP1 and MOCOS. In addition, treatment associations overlapped at gene level with baseline clinical and social outcomes. Treatment related DMPs are involved in memory formation-the key agent in trauma focused treatments-and enriched for molecular pathways commonly affected by trauma related disorders. Results were partially replicated in an independent sample of 53 female former child soldiers from Northern Uganda. Our results suggest a molecular impact of psychological treatment in women with war-related childhood trauma.Trial registration: Addressing Heightened Levels of Aggression in Traumatized Offenders With Psychotherapeutic Means (ClinicalTrials.gov Identifier: NCT02992561, 14/12/2016).
Collapse
Affiliation(s)
- Samuel Carleial
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany
| | - Daniel Nätt
- grid.5640.70000 0001 2162 9922Division of Neurobiology, Department of Biomedical and Clinical Sciences, University of Linköping, Building 463, Room 12.023, Linköping, Sweden
| | - Eva Unternährer
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,grid.6612.30000 0004 1937 0642Child- and Adolescent Research Department, Psychiatric University Hospitals Basel (UPK), University of Basel, Basel, Switzerland
| | - Thomas Elbert
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Katy Robjant
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Sarah Wilker
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany ,grid.7491.b0000 0001 0944 9128Department of Psychology and Sports Science, University of Bielefeld, 33501 Bielefeld, Germany
| | - Vanja Vukojevic
- grid.6612.30000 0004 1937 0642Psychiatric University Clinics, Transfaculty Research Platform, University of Basel, Wilhelm Klein-Strasse 27, CH-4012 Basel, Switzerland
| | - Iris-Tatjana Kolassa
- Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany ,grid.6582.90000 0004 1936 9748Department of Clinical and Biological Psychology, Institute of Psychology & Education, University of Ulm, Ulm University, Ulm, Germany
| | - Anja C. Zeller
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| | - Anke Koebach
- grid.9811.10000 0001 0658 7699Department of Psychology, Centre for Psychiatry, University of Konstanz, Feuerstein-Strasse. 55, Haus 22, 78479 Konstanz, Germany ,Vivo International E.V., Postbox 5108, 78430 Konstanz, Germany
| |
Collapse
|
5
|
Gong Y, Hu N, Ma L, Li W, Cheng X, Zhang Y, Zhu Y, Yang Y, Peng X, Zou D, Tian J, Yang L, Mei S, Wang X, Lo CH, Chang J, Hou T, Zhang H, Xu B, Zhong R, Yuan P. ABTB2 Regulatory Variant as Predictor of Epirubicin-Based Neoadjuvant Chemotherapy in Luminal A Breast Cancer. Front Oncol 2020; 10:571517. [PMID: 33102228 PMCID: PMC7545368 DOI: 10.3389/fonc.2020.571517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Epirubicin combined with docetaxel is the cornerstone of neoadjuvant chemotherapy (NAC) for breast cancer. The efficacy of NAC for luminal A breast cancer patients is very limited, and single nucleotide polymorphism is one of the most important factors that influences the efficacy. Our study is aimed to explore genetic markers for the efficacy of epirubicin combined with docetaxel for NAC in patients with luminal A breast cancer. Methods: A total of 421 patients with two stages of luminal A breast cancer were enrolled in this study from 2 centers. Among them 231 patients were included in the discovery cohort and 190 patients are in the replication cohort. All patients received epirubicin 75 mg/m2 and docetaxel 75 mg/m2 on day 1, in a 21-day cycle, a cycle for 2–6 cycles. Before treatment, 2 ml of peripheral blood was collected from each patient to isolate genomic DNA. Fourteen functional variants potentially regulating epirubicin/docetaxel response genes were prioritized by CellMiner and bioinformatics approaches. Moreover, biological assays were performed to determine the effect of genetic variations on response to chemotherapy. Results: The patients carrying rs6484711 variant A allele suffered a poor response to epirubicin and docetaxel for NAC (OR = 0.37, 95% CI: 0.18–0.74, P = 0.005) in combined stage. Moreover, expression quantitative trait loci (eQTL) analyses and luciferase reporter assays revealed that rs6484711 A allele significantly increased the expression of ABTB2. Subsequent biological assays illustrated that upregulation of ABTB2 significantly reduced the apoptosis rate of breast cancer cells and enhanced the chemo-resistance to epirubicin. Conclusions: Our study demonstrated rs6484711 polymorphism regulating ABTB2 expression might predict efficacy to epirubicin based NAC in luminal A breast cancer patients. These results provided valuable information about potential role of genetic variations in individualized chemotherapy.
Collapse
Affiliation(s)
- Yajie Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wentong Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tieying Hou
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Lou F, Zhang Y, Song N, Ji D, Gao T. Comprehensive Transcriptome Analysis Reveals Insights into Phylogeny and Positively Selected Genes of Sillago Species. Animals (Basel) 2020; 10:ani10040633. [PMID: 32272562 PMCID: PMC7222750 DOI: 10.3390/ani10040633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023] Open
Abstract
Sillago species lives in the demersal environments and face multiple stressors, such as localized oxygen depletion, sulfide accumulation, and high turbidity. In this study, we performed transcriptome analyses of seven Sillago species to provide insights into the phylogeny and positively selected genes of this species. After de novo assembly, 82,024, 58,102, 63,807, 85,990, 102,185, 69,748, and 102,903 unigenes were generated from S. japonica, S. aeolus, S. sp.1, S. sihama, S. sp.2, S. parvisquamis, and S. sinica, respectively. Furthermore, 140 shared orthologous exon markers were identified and then applied to reconstruct the phylogenetic relationships of the seven Sillago species. The reconstructed phylogenetic structure was significantly congruent with the prevailing morphological and molecular biological view of Sillago species relationships. In addition, a total of 44 genes were identified to be positively selected, and these genes were potential participants in the stress response, material (carbohydrate, amino acid and lipid) and energy metabolism, growth and differentiation, embryogenesis, visual sense, and other biological processes. We suspected that these genes possibly allowed Sillago species to increase their ecological adaptation to multiple environmental stressors.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
| | - Yuan Zhang
- Fishery College, Ocean University of China, Qingdao 266003, Shandong, China; (Y.Z.); (N.S.)
| | - Na Song
- Fishery College, Ocean University of China, Qingdao 266003, Shandong, China; (Y.Z.); (N.S.)
| | - Dongping Ji
- Agricultural Machinery Service Center, Fangchenggang 538000, Guangxi, China;
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
- Correspondence: ; Tel.: +86-580-2089-333
| |
Collapse
|
7
|
Gottschalk CG, Roy A, Jana M, Kundu M, Pahan K. Activation of Peroxisome Proliferator-Activated Receptor-α Increases the Expression of Nuclear Receptor Related 1 Protein (Nurr1) in Dopaminergic Neurons. Mol Neurobiol 2019; 56:7872-7887. [PMID: 31127527 DOI: 10.1007/s12035-019-01649-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Nuclear receptor related 1 protein (Nurr1) is an important transcription factor required for differentiation and maintenance of midbrain dopaminergic (DA) neurons. Since decrease in Nurr1 function either due to diminished expression or rare mutation is associated with Parkinson's disease (PD), upregulation of Nurr1 may be beneficial for PD. However, such mechanisms are poorly understood. This study underlines the importance of peroxisome proliferator-activated receptor (PPAR)α in controlling the transcription of Nurr1. Our mRNA analyses followed by different immunoassays clearly indicated that PPARα agonist gemfibrozil strongly upregulated the expression of Nurr1 in wild-type, but not PPARα-/-, DA neurons. Moreover, identification of conserved PPRE in the promoter of Nurr1 gene followed by chromatin immunoprecipitation analysis, PPRE luciferase assay, and manipulation of Nurr1 gene by viral transduction of different PPARα plasmids confirmed that PPARα was indeed involved in the expression of Nurr1. Finally, oral administration of gemfibrozil increased Nurr1 expression in vivo in nigra of wild-type, but not PPARα-/-, mice identifying PPARα as a novel regulator of Nurr1 expression and associated protection of DA neurons.
Collapse
Affiliation(s)
- Carl G Gottschalk
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite Cohn 310, Chicago, IL, 60612, USA. .,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Increase in Mitochondrial Biogenesis in Neuronal Cells by RNS60, a Physically-Modified Saline, via Phosphatidylinositol 3-Kinase-Mediated Upregulation of PGC1α. J Neuroimmune Pharmacol 2017; 13:143-162. [PMID: 29188424 PMCID: PMC5928179 DOI: 10.1007/s11481-017-9771-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022]
Abstract
This study highlights a novel approach to upregulate mitochondrial biogenesis in neuronal cells. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), increased the expression of Nrf1, Tfam, Mcu, and Tom20 (genes associated with mitochondrial biogenesis) and upregulated mitochondrial biogenesis in MN9D dopaminergic neuronal cells. Similarly RNS60 also increased mitochondrial biogenesis in primary dopaminergic neurons and in the nigra of MPTP-intoxicated mice. However, RNS60 had no effect on lysosomal biogenesis. Interestingly, we found that RNS60 upregulated PGC1α and siRNA knockdown of PGC1α abrogated the ability of RNS60 to increase mitochondrial biogenesis. Furthermore, we delineated that RNS60 increased the transcription of Pgc1a via type IA phosphatidylinositol (PI) 3-kinase-mediated activation of cAMP-response element-binding protein (CREB). Accordingly, knockdown of the PI3K – CREB pathway suppressed RNS60-mediated mitochondrial biogenesis. These results describe a novel property of RNS60 of enhancing mitochondrial biogenesis via PI 3-kinase-CREB-mediated up-regulation of PGC1α, which may be of therapeutic benefit in different neurodegenerative disorders.
Collapse
|
9
|
Vriend J, Liu W, Reiter RJ. The pineal gland: A model for adrenergic modulation of ubiquitin ligases. PLoS One 2017; 12:e0172441. [PMID: 28212404 PMCID: PMC5315301 DOI: 10.1371/journal.pone.0172441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/04/2017] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. PURPOSE Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. METHODS In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. RESULTS The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with a cyclic AMP analog, and norepinephrine. All previously described 24-hour rhythms in the pineal require an intact sympathetic input from the superior cervical ganglia. CONCLUSIONS The Hartley dataset thus provides evidence that the pineal gland is a highly useful model for studying adrenergically dependent mechanisms regulating variations in ubiquitin ligases, ubiquitin conjugases, and deubiquitinases, mechanisms that may be physiologically relevant not only in the pineal gland, but in all adrenergically innervated tissue.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wenjun Liu
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, United States of America
| |
Collapse
|
10
|
Roy A, Rangasamy SB, Kundu M, Pahan K. BPOZ-2 Gene Delivery Ameliorates Alpha-Synucleinopathy in A53T Transgenic Mouse Model of Parkinson's Disease. Sci Rep 2016; 6:22067. [PMID: 26916519 PMCID: PMC4768134 DOI: 10.1038/srep22067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/05/2016] [Indexed: 12/04/2022] Open
Abstract
Ankyrin-rich BTB/POZ domain containing protein-2 or BPOZ-2, a scaffold protein, has been recently shown to control the degradation of many biological proteins ranging from embryonic development to tumor progression. However, its role in the process of neuronal diseases has not been properly explored. Since, abnormal clearance of metabolic proteins contributes to the development of alpha-synuclein (α-syn) pathologies in Parkinson’s disease (PD), we are interested to explore if BPOZ-2 participates in the amelioration of α-syn in vivo in basal ganglia. Here we report that lentiviral administration of bpoz-2 gene indeed lowers the burden of α-syn in DA neurons in the nigra of A53T transgenic (A53T-Tg) mouse. Our detailed immunological analyses have shown that the overexpression of bpoz-2 dramatically improves both somatic and neuritic α-syn pathologies in the nigral DA neurons. Similarly, the specific ablation of bpoz-2 by lentiviral-shRNA stimulates the load of monomeric and polymeric forms of α-syn in the nigral DA neurons of A53T-Tg. While investigating the mechanism, we observed that BPOZ-2 was involved in a protein-protein association with PINK1 and therefore could stimulate PINK1-dependent autophagic clearance of α-syn. Our results have demonstrated that bpoz-2 gene delivery could have prospect in the amelioration of alpha-synucleinopathy in PD and other Lewy body diseases.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Suresh Babu Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, 820 South Darnen Avenue, Chicago, IL, USA
| |
Collapse
|