1
|
Chen H, Zhang L, Xu C, Shen X, Lou J, Wu S. Analysing transcriptomic signatures and identifying potential genes for the protective effect of inactivated COVID-19 vaccines. PeerJ 2023; 11:e15155. [PMID: 37096063 PMCID: PMC10122457 DOI: 10.7717/peerj.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Inactivated vaccines are one of the most effective strategies for controlling the coronavirus disease 2019 (COVID-19) pandemic. However, the response genes for the protective effect of inactivated vaccines are still unclear. Herein, we analysed the neutralization antibody responses elicited by vaccine serum and carried out transcriptome sequencing of RNAs isolated from the PBMCs of 29 medical staff receiving two doses of the CoronaVac vaccine. The results showed that SARS-CoV-2 neutralization antibody titers varied considerably among individuals, and revealed that many innate immune pathways were activated after vaccination. Furthermore, the blue module revealed that NRAS, YWHAB, SMARCA5, PPP1CC and CDC5L may be correlated with the protective effect of the inactivated vaccine. Additionally, MAPK1, CDC42, PPP2CA, EP300, YWHAZ and NRAS were demonstrated as the hub genes having a significant association with vaccines. These findings provide a basis for understanding the molecular mechanism of the host immune response induced by inactivated vaccines.
Collapse
Affiliation(s)
- Hongquan Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Chen Xu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiazhou Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengjun Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ghorbani S, Szigetvari PD, Haavik J, Kleppe R. Serine 19 phosphorylation and 14‐3‐3 binding regulate phosphorylation and dephosphorylation of tyrosine hydroxylase on serine 31 and serine 40. J Neurochem 2019; 152:29-47. [DOI: 10.1111/jnc.14872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sadaf Ghorbani
- Department of Biomedicine K.G. Jebsen Centre for Research on Neuropsychiatric Disorders University of Bergen Bergen Norway
| | - Peter D. Szigetvari
- Department of Biomedicine K.G. Jebsen Centre for Research on Neuropsychiatric Disorders University of Bergen Bergen Norway
| | - Jan Haavik
- Department of Biomedicine K.G. Jebsen Centre for Research on Neuropsychiatric Disorders University of Bergen Bergen Norway
- Division of Psychiatry Haukeland University Hospital Bergen Norway
| | - Rune Kleppe
- Division of Psychiatry Haukeland University Hospital Bergen Norway
- Computational Biology Unit Department of Informatics University of Bergen Bergen Norway
| |
Collapse
|
3
|
van Kleeff PJM, Gao J, Mol S, Zwart N, Zhang H, Li KW, de Boer AH. The Arabidopsis GORK K +-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:219-231. [PMID: 29475088 DOI: 10.1016/j.plaphy.2018.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 05/23/2023]
Abstract
Potassium (K+) is a vital ion for many processes in the plant and fine-tuned ion channels control the K+-fluxes across the plasma membrane. GORK is an outward-rectifying K+-channel with important functions in stomatal closure and in root K+-homeostasis. In this study, post-translational modification of the Arabidopsis GORK ion channel and its regulation by 14-3-3 proteins was investigated. To investigate the possible interaction between GORK and 14-3-3s an in vivo pull-down from an Arabidopsis protein extract with recombinant GORK C-terminus (GORK-C) indeed identified endogenous 14-3-3s (LAMBDA, CHI, NU) as binding partners in a phosphorylation dependent manner. However, a direct interaction between 14-3-3's and GORK-C could not be demonstrated. Since the pull-down of 14-3-3s was phosphorylation dependent, we determined GORK-C as substrate for CPK21 phosphorylation and identified three CPK21 phospho-sites in the GORK protein (T344, S518 and S649). Moreover, interaction of 14-3-3 to CPK21 strongly stimulates its kinase activity; an effect that can result in increased GORK phosphorylation and change in activity. Using the non-invasive vibrating probe technique, we measured the predominantly GORK mediated salt induced K+-efflux from wild-type, gork, cpk21, aha2 and 14-3-3 mutant roots. The mutants cpk21 and aha2 did not show statistical significant differences compared to WT. However, two (out of six) 14-3-3 isoforms, CHI and PHI, have a clear function in the salt induced K+-efflux. In conclusion, our results show that GORK can be phosphorylated by CPK21 and suggest that 14-3-3 proteins control GORK activity through binding with and activation of CPK21.
Collapse
Affiliation(s)
- P J M van Kleeff
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - J Gao
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - S Mol
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - N Zwart
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - H Zhang
- Netherlands Proteomics Centre, Utrecht University - H.R. Kruyt gebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - K W Li
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Amsterdam, The Netherlands.
| | - A H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Waløen K, Kleppe R, Martinez A, Haavik J. Tyrosine and tryptophan hydroxylases as therapeutic targets in human disease. Expert Opin Ther Targets 2016; 21:167-180. [PMID: 27973928 DOI: 10.1080/14728222.2017.1272581] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The ancient and ubiquitous monoamine signalling molecules serotonin, dopamine, norepinephrine, and epinephrine are involved in multiple physiological functions. The aromatic amino acid hydroxylases tyrosine hydroxylase (TH), tryptophan hydroxylase 1 (TPH1), and tryptophan hydroxylase 2 (TPH2) catalyse the rate-limiting steps in the biosynthesis of these monoamines. Genetic variants of TH, TPH1, and TPH2 genes are associated with neuropsychiatric disorders. The interest in these enzymes as therapeutic targets is increasing as new roles of these monoamines have been discovered, not only in brain function and disease, but also in development, cardiovascular function, energy and bone homeostasis, gastrointestinal motility, hemostasis, and liver function. Areas covered: Physiological roles of TH, TPH1, and TPH2. Enzyme structures, catalytic and regulatory mechanisms, animal models, and associated diseases. Interactions with inhibitors, pharmacological chaperones, and regulatory proteins relevant for drug development. Expert opinion: Established inhibitors of these enzymes mainly target their amino acid substrate binding site, while tetrahydrobiopterin analogues, iron chelators, and allosteric ligands are less studied. New insights into monoamine biology and 3D-structural information and new computational/experimental tools have triggered the development of a new generation of more selective inhibitors and pharmacological chaperones. The enzyme complexes with their regulatory 14-3-3 proteins are also emerging as therapeutic targets.
Collapse
Affiliation(s)
- Kai Waløen
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Rune Kleppe
- b Computational Biology Unit, Department of Informatics , University of Bergen , Bergen , Norway
| | - Aurora Martinez
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| | - Jan Haavik
- a Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders , University of Bergen , Bergen , Norway
| |
Collapse
|
5
|
Hritz J, Byeon IJL, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM. Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR. Biophys J 2015; 107:2185-94. [PMID: 25418103 DOI: 10.1016/j.bpj.2014.08.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022] Open
Abstract
Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3?, by (31)P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3? binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3? one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3? dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3? dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3? dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3? dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system.
Collapse
Affiliation(s)
- Jozef Hritz
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Structural Biology, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Troy Krzysiak
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Vladimir Sklenar
- Department of Structural Biology, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|