1
|
Mitterboeck TF, Liu S, Adamowicz SJ, Fu J, Zhang R, Song W, Meusemann K, Zhou X. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. Gigascience 2018; 6:1-14. [PMID: 29020740 PMCID: PMC5632299 DOI: 10.1093/gigascience/gix073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects.
Collapse
Affiliation(s)
- T Fatima Mitterboeck
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada.,Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Shanlin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Sarah J Adamowicz
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada.,Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Rui Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China
| | - Wenhui Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China
| | - Karen Meusemann
- University of Freiburg, Department for Biology I (Zoology), Evolutionary Biology and Ecology, Hauptstr. 1, D-79104 Freiburg, Germany.,Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.,Australian National Insect Collection CSIRO, Natl Collections & Marine Infrastructure, Clunies Ross Street, ACTON, 2601 ACT, Canberra, Australia
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China.,College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Montelli S, Peruffo A, Patarnello T, Cozzi B, Negrisolo E. Back to Water: Signature of Adaptive Evolution in Cetacean Mitochondrial tRNAs. PLoS One 2016; 11:e0158129. [PMID: 27336480 PMCID: PMC4919058 DOI: 10.1371/journal.pone.0158129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/11/2016] [Indexed: 11/29/2022] Open
Abstract
The mitochondrion is the power plant of the eukaryotic cell, and tRNAs are the fundamental components of its translational machinery. In the present paper, the evolution of mitochondrial tRNAs was investigated in the Cetacea, a clade of Cetartiodactyla that retuned to water and thus had to adapt its metabolism to a different medium than that of its mainland ancestors. Our analysis focussed on identifying the factors that influenced the evolution of Cetacea tRNA double-helix elements, which play a pivotal role in the formation of the secondary and tertiary structures of each tRNA and consequently manipulate the whole translation machinery of the mitochondrion. Our analyses showed that the substitution pathways in the stems of different tRNAs were influenced by various factors, determining a molecular evolution that was unique to each of the 22 tRNAs. Our data suggested that the composition, AT-skew, and GC-skew of the tRNA stems were the main factors influencing the substitution process. In particular, the range of variation and the fluctuation of these parameters affected the fate of single tRNAs. Strong heterogeneity was observed among the different species of Cetacea. Finally, it appears that the evolution of mitochondrial tRNAs was also shaped by the environments in which the Cetacean taxa differentiated. This latter effect was particularly evident in toothed whales that either live in freshwater or are deep divers.
Collapse
Affiliation(s)
- Stefano Montelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
- * E-mail:
| |
Collapse
|