1
|
Sarkar D, Bhunia A. Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis. ACS BIO & MED CHEM AU 2024; 4:4-19. [PMID: 38404748 PMCID: PMC10885112 DOI: 10.1021/acsbiomedchemau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 02/27/2024]
Abstract
The pursuit of a novel structural motif that can shed light on the key functional attributes is a primary focus in the study of protein folding disorders. Decades of research on Alzheimer's disease (AD) have centered on the Amyloid β (Aβ) pathway, highlighting its significance in understanding the disorder. The diversity in the Aβ pathway and the possible silent tracks which are yet to discover, makes it exceedingly intimidating to the interdisciplinary scientific community. Over the course of AD research, Aβ has consistently been at the forefront of scientific inquiry and discussion. In this review, we epitomize the role of a potential structural motif (GxxxG motif) that may provide a new horizon to the Aβ conflict. We emphasize on how comprehensive understanding of this motif from a structure-function perspective may pave the way for designing novel therapeutics intervention in AD and related diseases.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, Salt Lake EN
80, Kolkata 700 091, India
| |
Collapse
|
2
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
3
|
Disaggregation of Islet Amyloid Polypeptide Fibrils as a Potential Anti-Fibrillation Mechanism of Tetrapeptide TNGQ. Int J Mol Sci 2022; 23:ijms23041972. [PMID: 35216095 PMCID: PMC8876742 DOI: 10.3390/ijms23041972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) fibrillation has been commonly associated with the exacerbation of type 2 diabetes prognosis. Consequently, inhibition of IAPP fibrillation to minimize β-cell cytotoxicity is an important approach towards β-cell preservation and type 2 diabetes management. In this study, we identified three tetrapeptides, TNGQ, MANT, and YMSV, that inhibited IAPP fibrillation. Using thioflavin T (ThT) fluorescence assay, circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and molecular docking, we evaluated the potential anti-fibrillation mechanism of the tetrapeptides. ThT fluorescence kinetics and microscopy as well as transmission electron microscopy showed that TNGQ was the most effective inhibitor based on the absence of normal IAPP fibrillar morphology. CD spectroscopy showed that TNGQ maintained the α-helical conformation of monomeric IAPP, while DLS confirmed the presence of varying fibrillation species. Molecular docking showed that TNGQ and MANT interact with monomeric IAPP mainly by hydrogen bonding and electrostatic interaction, with TNGQ binding at IAPP surface compared to YMSV, which had the highest docking score, but interact mainly through hydrophobic interaction in IAPP core. The highly polar TNGQ was the most active and appeared to inhibit IAPP fibrillation by disaggregation of preformed IAPP fibrils. These findings indicate the potential of TNGQ in the development of peptide-based anti-fibrillation and antidiabetic nutraceuticals.
Collapse
|
4
|
Tang Y, Zhang D, Liu Y, Zhang Y, Zhou Y, Chang Y, Zheng B, Xu A, Zheng J. A new strategy to reconcile amyloid cross-seeding and amyloid prevention in a binary system of α-synuclein fragmental peptide and hIAPP. Protein Sci 2022; 31:485-497. [PMID: 34850985 PMCID: PMC8820123 DOI: 10.1002/pro.4247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Amyloid cross-seeding and amyloid inhibition are two different research subjects being studied separately for different pathological purposes, in which amyloid cross-seeding targets to study the co-aggregation of different amyloid proteins and potential molecular links between different neurodegenerative diseases, while amyloid inhibition aims to design different molecules for preventing amyloid aggregation. While both amyloid cross-seeding and amyloid inhibition are critical for better understanding the pathological causes of different neurodegenerative diseases including Parkinson disease (PD) and Type 2 diabetes (T2D), less efforts have been made to reconcile the two phenomena. Herein, we proposed a new preventive strategy to demonstrate (a) the cross-seeding of octapeptide TKEQVTNV from α-synuclein (associated with PD) with hIAPP (associated with T2D) and (b) the cross-seeding-promoted hIAPP fibrillization and cross-seeding-reduced hIAPP toxicity. Collective results confirmed that TKEQVTNV can indeed cross-seed with hIAPP monomers and oligomers, not protofibrils, to form β-structure-rich fibrils and to accelerate hIAPP fibrillization. Moreover, such cross-seeding-induced promotion effect by TKEQVTNV also rescued the pancreatic cells from hIAPP-induced cytotoxicity by increasing cell viability and reducing cell apoptosis simultaneously. This work provides a new angle to discover amyloid fragments and use them as amyloid modulators (inhibitors or promotors) to interfere with amyloid aggregation of other amyloid proteins, as well as sequence/structure basis to explore the amyloid cross-seeding between different amyloid proteins that may help explain a potential molecular talk between different neurodegenerative diseases.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| | - Yifan Zhou
- Department of Polymer ScienceThe University of AkronAkronOhioUSA
| | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| | | | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion EngineeringThe University of AkronAkronOhioUSA
| |
Collapse
|
5
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
6
|
Tang Y, Liu Y, Zhang Y, Zhang D, Gong X, Zheng J. Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chem Neurosci 2021; 12:1419-1427. [PMID: 33780229 DOI: 10.1021/acschemneuro.1c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence have shown a strong pathological correlation between cardiovascular disease (CVD) and Type II diabetes (T2D), both of which share many common risk factors (e.g., hyperglycemia, hypertension, hypercoagulability, and dyslipidemia) and mutually contribute to each other. Driven by such strong CVD-T2D correlation and marginal benefits from drug development for T2D, here we proposed to repurpose a CVD drug of cloridarol as human islet amyloid peptide (hIAPP) inhibitor against its abnormal misfolding and aggregation, which is considered as a common and critical pathological event in T2D. To this end, we investigated the inhibition activity of cloridarol on the aggregation and toxicity of hIAPP1-37 using combined experimental and computational approaches. Collective experimental data from ThT, AFM, and CD demonstrated the inhibition ability of cloridarol to prevent hIAPP aggregation from its monomeric and oligomeric states, leading to the overall reduction of hIAPP fibrils up to 57% at optimal conditions. MTT and LDH cell assays also showed that cloridarol can also effectively increase cell viability by 15% and decrease cell apoptosis by 28%, confirming its protection of islet β-cells from hIAPP-induced cell toxicity. Furthermore, comparative molecular dynamics simulations revealed that cloridarol was preferentially bound to the C-terminal β-sheet region of hIAPP oligomers through a combination of hydrophobic interactions, π-π stacking, and hydrogen bonding. Such multiple site bindings allowed cloridarol to disturb hIAPP structures, reduce β-sheet content, and block the lateral association pathway of hIAPP aggregates, thus explaining experimental findings. Different from other single-target hIAPP inhibitors, cloridarol is unique in that it works as both a CVD drug and hIAPP inhibitor, which can be used as a viable structural template (especially for benzofuran) for the further development of cloridarol-based or benzofuran-based inhibitors of amyloid proteins.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | | | | | - Xiong Gong
- Department of Polymer Engineering The University of Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| |
Collapse
|
7
|
Zeng HJ, Wang SS, Sun LJ, Miao M, Yang R. Investigation on the effect of three isoflavones on the fibrillation of hen egg-white lysozyme. J Mol Recognit 2021; 34:e2889. [PMID: 33646596 DOI: 10.1002/jmr.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
In this paper, the effects of three isoflavones including daidzein, genistein, and puerarin on fibrillation of hen egg-white lysozyme were investigated by various analytical methods. The results demonstrated that all isoflavones could effectively inhibit the fibrillogenesis of hen egg-white lysozyme and destabilized the preformed fibrils of hen egg-white lysozyme in a dose-dependent manner. To further understand the inhibition mechanism, molecular modeling was carried out. The docking results demonstrated that the isoflavones could bind to two key fibrogenic sites in hen egg-white lysozyme through van der Waals force, electrostatic forces, and hydrogen bonding, as well as σ-π stacking. By these means, isoflavones could not only obviously enhance the hydrophobicity of the binding sites, but also greatly stabilize the native state of HEWL, which was able to postpone the fibrosis process of hen egg-white lysozyme.
Collapse
Affiliation(s)
- Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sha-Sha Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Jun Sun
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Min Miao
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| | - Ran Yang
- College of Chemistry, Green Catalysis center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and their Bioanalytical Applications, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Kalita S, Kalita S, Paul A, Shah M, Kumar S, Mandal B. Site-specific single point mutation by anthranilic acid in hIAPP 8-37 enhances anti-amyloidogenic activity. RSC Chem Biol 2021; 2:266-273. [PMID: 34458787 PMCID: PMC8341151 DOI: 10.1039/d0cb00178c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/24/2020] [Indexed: 12/01/2022] Open
Abstract
Amylin or hIAPP, together with insulin, plays a significant role in glucose metabolism. However, it undergoes β-sheet rich amyloid formation associated with pancreatic β-cell dysfunction leading to type-2 diabetes (T2D). Recent studies suggest that restricting β-sheet formation in it may halt amyloid formation, which may limit the risk for the disease. Several peptide-based inhibitors have been reported to prevent aggregation. However, most of them have limitations, including low binding efficiency, active only at higher doses, poor solubility, and proteolytic degradation. Insertion of non-coded amino acids renders proteolytically stable peptides. We incorporated a structurally rigid β-amino acid, Anthranilic acid (Ant), at different sites within the central hydrophobic region of hIAPP and developed two singly mutated hIAPP8–37 peptidomimetics. These peptidomimetics inhibited the amyloid formation of hIAPP substantially even at low concentration, as evident from in vitro ThT, CD, FT-IR, TEM, and Congo red staining birefringence results. These peptidomimetics also disrupted the preformed aggregates formed by hIAPP into non-toxic species. These β-amino acid-based peptidomimetics can be an attractive scaffold for therapeutic design towards T2D or other protein misfolding diseases. β-Amino acid based peptidomimetics are attractive scaffolds for therapeutics design towards T2D. They prevent amyloid formation of hIAPP by forming non-fibrillar non-toxic aggregates.![]()
Collapse
Affiliation(s)
- Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Sujan Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| | - Manisha Shah
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati Assam-781039 India
| | - Sachin Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati Assam-781039 India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati Assam-781039 India
| |
Collapse
|
9
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
10
|
Saini RK, Goyal D, Goyal B. Targeting Human Islet Amyloid Polypeptide Aggregation and Toxicity in Type 2 Diabetes: An Overview of Peptide-Based Inhibitors. Chem Res Toxicol 2020; 33:2719-2738. [PMID: 33124419 DOI: 10.1021/acs.chemrestox.0c00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease characterized by insulin resistance and a progressive loss of pancreatic islet β-cell mass, which leads to insufficient secretion of insulin and hyperglycemia. Emerging evidence suggests that toxic oligomers and fibrils of human islet amyloid polypeptide (hIAPP) contribute to the death of β-cells and lead to T2D pathogenesis. These observations have opened new avenues for the development of islet amyloid therapies for the treatment of T2D. The peptide-based inhibitors are of great value as therapeutic agents against hIAPP aggregation in T2D owing to their biocompatibility, feasibility of synthesis and modification, high specificity, low toxicity, proteolytic stability (modified peptides), and weak immunogenicity as well as the large size of involved interfaces during self-aggregation of hIAPP. An understanding of what has been done and achieved will provide key insights into T2D pathology and assist in the discovery of more potent drug candidates for the treatment of T2D. In this article, we review various peptide-based inhibitors of hIAPP aggregation, including those derived from the hIAPP sequence and those not based on the sequence, consisting of both natural as well as unnatural amino acids and their derivatives. The present review will be beneficial in advancing the field of peptide medicine for the treatment of T2D.
Collapse
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab India
| |
Collapse
|
11
|
Huo XZ, Wang X, Yang R, Qu LB, Zeng HJ. Studies on the effect of a Fupenzi glycoprotein on the fibrillation of bovine serum albumin and its antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118387. [PMID: 32416513 DOI: 10.1016/j.saa.2020.118387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of a glycoprotein obtained from Fupenzi (FPZ) (Rubus chingii Hu.) on the fibrillation of bovine serum album (BSA) was investigated by multi-spectroscopic methods and transmission electron microscopy. Moreover, the cytotoxicity of the glycoprotein and the effect of it on H2O2-induced cell viability were investigated by cell counting kit and β-galactosidase kit, respectively. The experimental results indicated that the glycoprotein showed very low toxicity to NRK-52E cells and could obviously delay cell senescence and improve cell viability. Moreover, the glycoprotein could effectively inhibit the formation of BSA fibrils and destroy the stability of preformed BSA fibrils in a concentration-dependent manner. Generally, antioxidant capacities are thought to be related to the anti-amyloidogenic activity of inhibitors; therefore, to reveal the inhibitory mechanism, the anti-oxidative property of the glycoprotein was examined by DPPH and ABTS assays. The results demonstrated that FPZ glycoprotein had a remarkable antioxidant activity and the IC50 values of DPPH and ABTS were 0.249 mg mL-1 and 0.092 mg mL-1, respectively. This work suggested that the FPZ glycoprotein had the potential to be designed a new therapeutic agent for attenuating aging and preventing the age-related diseases.
Collapse
Affiliation(s)
- Xiu-Zhu Huo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ling-Bo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
12
|
Sun LJ, Qu L, Yang R, Yin L, Zeng HJ. Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation. Int J Biol Macromol 2019; 128:870-876. [DOI: 10.1016/j.ijbiomac.2019.01.212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/28/2023]
|
13
|
Huang Q, Wang H, Gao H, Cheng P, Zhu L, Wang C, Yang Y. In Situ Observation of Amyloid Nucleation and Fibrillation by FastScan Atomic Force Microscopy. J Phys Chem Lett 2019; 10:214-222. [PMID: 30543438 DOI: 10.1021/acs.jpclett.8b03143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amyloidogenic proteins are key components in various amyloid diseases. The aggregation process and the local structural changes of the toxic species from toxic oligomers to protofibrils and subsequently to mature fibrils are crucial for understanding the molecular mechanism of the amyloidgenic process and also for developing a treatment strategy. Exploration on amyloid aggregation dynamics in situ under real liquid condition is feasible for reflection of the whole process with biological correlations. Herein we report the in situ dynamic study and structure exploration of Amylin1-37 aggregation by FastScan atomic force microscopy. Amylin1-37 nucleation process was observed in which smaller oligomers or monomers were assimilated by the surrounding big oligomers. Amylin1-37 protofibril aggregation was positively correlated with monomer concentration, whereas no direct relationship was observed between fibril elongation and monomer concentration. Growing end and passivated end were found during Amylin1-37 fibrillation. In the assembly process, the growing end kept its structure, and its stiffness was lower than the aggregate body, whereas the passivated end might experience rearrangements of β-structures, which eventually enabled fibril growth from this end. This work is beneficial to the insights of amyloid fibrillation and may shed light on the development of drugs targeting the specific phase of amyloid aggregation.
Collapse
Affiliation(s)
- Qunxing Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Peng Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
14
|
Khatun S, Singh A, Mandal D, Chandra A, Gupta AN. Quantification of protein aggregation rates and quenching effects of amylin–inhibitor complexes. Phys Chem Chem Phys 2019; 21:20083-20094. [DOI: 10.1039/c9cp03238j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative inhibition capabilities of graphene quantum dots, resveratrol, and curcumin decipher the dose-dependent competitive role of protein aggregation rate and quenching effect in amylin fibrillation.
Collapse
Affiliation(s)
- Suparna Khatun
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anurag Singh
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Debabrata Mandal
- School of Nanoscience and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Amreesh Chandra
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
- School of Nanoscience and Technology
| | - Amar Nath Gupta
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
15
|
Liu Z, Li X, Wu X, Zhu C. A dual-inhibitor system for the effective antifibrillation of Aβ40 peptides by biodegradable EGCG–Fe(iii)/PVP nanoparticles. J Mater Chem B 2019; 7:1292-1299. [DOI: 10.1039/c8tb03266a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By the synergistic effect of dual inhibition, EFPP NPs exhibited a significant effect on the inhibition of Aβ40 fibrillation and on the disaggregation of existing Aβ40 fibrils.
Collapse
Affiliation(s)
- Zexiu Liu
- Institute of Food Safety and Environment Monitoring
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xianglong Li
- Institute of Food Safety and Environment Monitoring
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xiaoping Wu
- Institute of Food Safety and Environment Monitoring
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Chunling Zhu
- Institute of Food Safety and Environment Monitoring
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
16
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Yousaf M, Huang H, Li P, Wang C, Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against hIAPP Amyloid Aggregation. ACS Chem Neurosci 2017; 8:1368-1377. [PMID: 28230965 DOI: 10.1021/acschemneuro.7b00015] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrillar deposits of the human islet amyloid polypeptide (hIAPP) are considered as a root of Type II diabetes mellitus. Fluorinated graphene quantum dots (FGQDs) are new carbon nanomaterials with unique physicochemical properties containing highly electronegative F atoms. Herein we report a single step synthesis method of FGQDs with an inhibitory effect on aggregation and cytotoxicity of hIAPP in vitro. Highly fluorescent and water dispersible FGQDs, less than 3 nm in size, were synthesized by the microwave-assisted hydrothermal method. Efficient inhibition capability of FGQDs to amyloid aggregation was demonstrated. The morphologies of hIAPP aggregates were observed to change from the entangled long fibrils to short thin fibrils and amorphous aggregates in the presence of FGQDs. In thioflavin T fluorescence analysis, inhibited aggregation with prolonged lag time and reduced fluorescence intensity at equilibrium were observed when hIAPP was incubated together with FGQDs. Circular dichroism spectrum results reveal that FGQDs could inhibit conformational transition of the peptide from native structure to β-sheets. FGQDs could also rescue the cytotoxicity of INS-1 cells induced by hIAPP in a dose dependent manner. This study could be beneficial for design and preparation of inhibitors for amyloids, which is important for prevention and treatment of amyloidosis.
Collapse
Affiliation(s)
- Maryam Yousaf
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Huan Huang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences , 19 A Yuquan Rd, Shijingshan District, Beijing, P. R. China 100049
| |
Collapse
|
18
|
Li Y, Wang L, Lu T, Wei Y, Li F. The effects of chondroitin sulfate and serum albumin on the fibrillation of human islet amyloid polypeptide at phospholipid membranes. Phys Chem Chem Phys 2017; 18:12000-8. [PMID: 27067251 DOI: 10.1039/c5cp07642k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosaminoglycans and serum albumin are important cellular components that regulate the fibril formation of proteins. Whereas the effects of cellular components on the fibrillation of amyloid proteins in bulk solution are widely studied, less attention has been paid to the effects of cellular components on amyloidogenesis occurring at cellular membranes. In this study, we focus on the impacts of chondroitin sulfate A (CSA) and bovine serum albumin (BSA) on the amyloidogenic behaviors of human islet amyloid polypeptide (hIAPP) at phospholipid membranes consisting of neutral POPC and anionic POPG. Using the thioflavin T fluorescence assay, atomic force microscopy, circular dichroism and nuclear magnetic resonance measurements, we demonstrate that CSA has an intensive promotion effect on the fibrillation of hIAPP at the POPC membrane, which is larger than the total effect of CSA alone and POPC alone. The further enhanced promotion of the fibrillation of hIAPP by CSA at the neutral membrane is associated with a specific interaction of CSA with POPC. In contrast, the activity of BSA as an inhibitor of hIAPP fibrillation observed in bulk solution decreases dramatically in the presence of POPG vesicles. The dramatic loss of the inhibition efficiency of BSA arises essentially from a specific interaction with the POPG component, but not simply from suppression by an opposite effect of the anionic membrane. The findings in this study suggest that the interactions between membranes and cellular components may have a significant effect on the activity of the cellular components in regulating the fibrillation of hIAPP.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China.
| | - Li Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China.
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China.
| | - Ying Wei
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
19
|
Li X, Wan M, Gao L, Fang W. Mechanism of Inhibition of Human Islet Amyloid Polypeptide-Induced Membrane Damage by a Small Organic Fluorogen. Sci Rep 2016; 6:21614. [PMID: 26887358 PMCID: PMC4757883 DOI: 10.1038/srep21614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/27/2016] [Indexed: 11/09/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is believed to be responsible for the death of insulin-producing β-cells. However, the mechanism of membrane damage at the molecular level has not been fully elucidated. In this article, we employ coarse- grained dissipative particle dynamics simulations to study the interactions between a lipid bilayer membrane composed of 70% zwitterionic lipids and 30% anionic lipids and hIAPPs with α-helical structures. We demonstrated that the key factor controlling pore formation is the combination of peptide charge-induced electroporation and peptide hydrophobicity-induced lipid disordering and membrane thinning. According to these mechanisms, we suggest that a water-miscible tetraphenylethene BSPOTPE is a potent inhibitor to rescue hIAPP-induced cytotoxicity. Our simulations predict that BSPOTPE molecules can bind directly to the helical regions of hIAPP and form oligomers with separated hydrophobic cores and hydrophilic shells. The micelle-like hIAPP-BSPOTPE clusters tend to be retained in the water/membrane interface and aggregate therein rather than penetrate into the membrane. Electrostatic attraction between BSPOTPE and hIAPP also reduces the extent of hIAPP binding to the anionic lipid bilayer. These two modes work together and efficiently prevent membrane poration.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Zhou X, Cao C, Chen Q, Yu Q, Liu Y, Yin T, Liu J. PEG modified graphene oxide loaded with EALYLV peptides for inhibiting the aggregation of hIAPP associated with type-2 diabetes. J Mater Chem B 2015; 3:7055-7067. [PMID: 32262708 DOI: 10.1039/c5tb00487j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) was found as amyloid aggregate deposits in the pancreatic islets of patients with type-2 diabetes and studies showed that insulin and its derivatives were the potent inhibitors of hIAPP aggregation. However, several emerging therapies with this goal showed limited success due to the instability and inefficiency of insulin derivatives. Nanosized graphene oxide (nGO) possesses high stability and affinity toward aromatic rings. In this study, an insulin-derived peptide, EALYLV, was stabilized by loading on nGO@PEG to inhibit aggregation and hIAPP-induced cytotoxicity. The results showed that nGO@PEG@EALYLV (abbreviated as nGO@PEG@E) can effectively inhibit the aggregation of hIAPP via electrostatic adsorption and specific binding to the active sites of hIAPP. We further evaluated the protective effect of nGO@PEG@E on INS-1 cells in the presence of hIAPP. Treatment with nGO@PEG@E could significantly elevate the viability of INS-1 cells, decrease the level of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. All the results indicated that nGO@PEG@E could inhibit the aggregation of hIAPP, which reduces its cytotoxicity.
Collapse
Affiliation(s)
- Xianbo Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
The effects of organic solvents on the membrane-induced fibrillation of human islet amyloid polypeptide and on the inhibition of the fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3162-70. [PMID: 25218343 DOI: 10.1016/j.bbamem.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/23/2022]
Abstract
The organic solvent dimethylsulphoxide (DMSO) and 1,1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) have been widely used as a pre-treating agent of amyloid peptides and as a vehicle for water-insoluble inhibitors. These solvents are left in many cases as a trace quantity in bulk and membrane environments with treated amyloid peptides or inhibitors. In the present work, we studied the effects of the two organic solvents on the aggregation behaviors of human islet amyloid polypeptide (hIAPP) and the performances of an all-D-amino-acid inhibitor D-NFGAIL in preventing hIAPP fibrillation both in bulk solution and at phospholipid membrane. We showed that the presence of 1% v/v DMSO or HFIP decreases the rate of fibril formation of hIAPP at the lipid membrane rather than accelerates the fibril formation as what happened in bulk solution. We also showed that the presence of 1% v/v DMSO or HFIP impairs the activity of the inhibitor at the lipid membrane surface dramatically, while it affects the efficiency of the inhibitor in bulk solution slightly. We found that the inhibitor inserts into the lipid membrane more deeply or with more proportion in the presence of the organic solvents than it does in the absence of the organic solvents, which may hinder the binding of the inhibitor to hIAPP at the lipid membrane. Our results suggest that the organic solvents should be used with caution in studying membrane-induced fibrillogenesis of amyloid peptides and in testing amyloid inhibitors under membrane environments to avoid incorrect evaluation to the fibrillation process of amyloid peptides and the activity of inhibitors.
Collapse
|