1
|
Ma X, Feng L, Tao A, Zenda T, He Y, Zhang D, Duan H, Tao Y. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:259. [PMID: 38038768 DOI: 10.1007/s00122-023-04495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE Seventeen PHS-QTLs and candidate genes were obtained, including eleven major loci, three under multiple environments and two with co-localization by the other mapping methods; The functions of three candidate genes were validated using mutants; nine target proteins and five networks were filtered by joint analysis of GWAS and WGCNA. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect yield, as well as grain and hybrid quality in seed production. Therefore, identification of genetic and regulatory pathways underlying PHS and SD is key to gene function analysis, allelic variation mining and genetic improvement. In this study, 78,360 SNPs by SLAF-seq of 230 maize chromosome segment introgression lines (ILs), PHS under five environments were used to conduct GWAS (genome wide association study) (a threshold of 1/n), and seventeen unreported PHS QTLs were obtained, including eleven QTLs with PVE > 10% and three QTLs under multiple environments. Two QTL loci were co-located between the other two genetic mapping methods. Using differential gene expression analyses at two stages of grain development, gene functional analysis of Arabidopsis mutants, and gene functional analysis in the QTL region, seventeen PHS QTL-linked candidate genes were identified, and their five molecular regulatory networks constructed. Based on the Arabidopsis T-DNA mutations, three candidate genes were shown to regulate for SD and PHS. Meanwhile, using RNA-seq of grain development, the weighted correlation network analysis (WGCNA) was performed, deducing five regulatory pathways and target genes that regulate PHS and SD. Based on the conjoint analysis of GWAS and WGCNA, four pathways, nine target proteins and target genes were revealed, most of which regulate cell wall metabolism, cell proliferation and seed dehydration tolerance. This has important theoretical and practical significance for elucidating the genetic basis of maize PHS and SD, as well as mining of genetic resources and genetic improvement of traits.
Collapse
Affiliation(s)
- Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yuan He
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Daxiao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Molecular insights on PS-PLA 1 lipase activity of human ABHD16B. Biophys Chem 2023; 296:106976. [PMID: 36841071 DOI: 10.1016/j.bpc.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The human alpha beta hydrolase domain (ABHD) proteins are ubiquitous and regulate the cellular lipids' anabolic and catabolic processes. The structural aspects for specific biochemical function of many ABHD proteins related to physiological disorders and its link to pathological conditions remain unknown. Here putative human ABHD16B protein was overexpressed in Saccharomyces cerevisiae for its biological activity. In-vitro enzymatic assay of the recombinant ABHD16B protein with fluorescently tagged glycerophospholipids revealed that the PLA1 activity is observed with phosphatidylserine (PS). In addition, it efficiently hydrolyzed monoacylglycerol over triacylglycerols. Further, molecular dynamic simulations and per residue binding free energy decomposition analysis revealed that the origin of PS-specific PLA1 activity of ABHD16B is due to the electrostatic interaction of the PS head group with K8, R319, and E178, which led to having the hydrogen bond interaction of sn-1 acyl chain ester to the catalytic site residues. Site-directed mutagenesis of the 245GXSXG249 motif of ABHD16B reduced the maximal lipase activity of PS and MAG. In summary, these results revealed that ABHD16B plays a vital role in PS selectivity that in turn, controls the specific subcellular pools of 2-LPS metabolism in the tissues at low pH.
Collapse
|
3
|
Martínez-Corona R, Vázquez Marrufo G, Cortés Penagos C, Madrigal-Pérez LA, González-Hernández JC. Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus. Yeast 2019; 37:149-162. [PMID: 31758565 DOI: 10.1002/yea.3449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lipases are hydrolytic enzymes that break the ester bonds of triglycerides, generating free fatty acids and glycerol. Extracellular lipase activity has been reported for the nonconventional yeast Kluyveromyces marxianus, grown in olive oil as a substrate, and the presence of at least eight putative lipases has been detected in its genome. However, to date, there is no experimental evidence on the physiological role of the putative lipases nor their structural and catalytic properties. In this study, a bioinformatic analysis of the genes of the putative lipases from K. marxianus L-2029 was performed, particularly identifying and characterizing the extracellular expected enzymes, due to their biotechnological relevance. The amino acid sequence of 10 putative lipases, obtained by in silico translation, ranged between 389 and 773 amino acids. Two of the analysed putative proteins showed a signal peptide, 25 and 33 amino acids long for KmYJR107Wp and KmLIP3p, and a molecular weight of 44.53 and 58.23 kDa, respectively. The amino acid alignment of KmLIP3p and KmYJR107Wp with the crystallized lipases from a patatin and the YlLip2 lipase from Yarrowia lipolytica, respectively, revealed the presence of the hydrolase characteristic motifs. From the 3D models of putative extracellular K. marxianus L-2029 lipases, the conserved pentapeptide of each was determined, being GTSMG for KmLIP3p and GHSLG for KmYJR107Wp; besides, the genes of these two enzymes (LIP3 and YJR107W) are apparently regulated by oleate response elements. The phylogenetic analysis of all K. marxianus lipases revealed evolutionary affinities with lipases from abH15.03, abH23.01, and abH23.02 families.
Collapse
Affiliation(s)
- Ricardo Martínez-Corona
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.,Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Morelia, Mexico
| | - Gerardo Vázquez Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos Cortés Penagos
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Luis Alberto Madrigal-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | | |
Collapse
|
4
|
Graef M. Lipid droplet-mediated lipid and protein homeostasis in budding yeast. FEBS Lett 2018; 592:1291-1303. [PMID: 29397034 PMCID: PMC5947121 DOI: 10.1002/1873-3468.12996] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Lipid droplets are conserved specialized organelles that store neutral lipids. Our view on this unique organelle has evolved from a simple fat deposit to a highly dynamic and functionally diverse hub—one that mediates the buffering of fatty acid stress and the adaptive reshaping of lipid metabolism to promote membrane and organelle homeostasis and the integrity of central proteostasis pathways, including autophagy, which ensure stress resistance and cell survival. This Review will summarize the recent developments in the budding yeast Saccharomyces cerevisiae, as this model organism has been instrumental in deciphering the fundamental mechanisms and principles of lipid droplet biology and interconnecting lipid droplets with many unanticipated cellular functions applicable to many other cell systems.
Collapse
Affiliation(s)
- Martin Graef
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep 2016; 36:BSR20160033. [PMID: 27247428 PMCID: PMC4945992 DOI: 10.1042/bsr20160033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase.
Collapse
|
6
|
Heier C, Taschler U, Radulovic M, Aschauer P, Eichmann TO, Grond S, Wolinski H, Oberer M, Zechner R, Kohlwein SD, Zimmermann R. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism. J Biol Chem 2016; 291:11865-75. [PMID: 27036938 PMCID: PMC4882453 DOI: 10.1074/jbc.m115.705541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz and
| | - Philip Aschauer
- From the Institute of Molecular Biosciences, University of Graz and
| | | | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz and
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz and
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | | |
Collapse
|
7
|
Selvaraju K, Gowsalya R, Vijayakumar R, Nachiappan V. MGL2/YMR210w encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 2016; 590:1174-86. [PMID: 26991558 DOI: 10.1002/1873-3468.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/27/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
In silico analysis of the uncharacterized open reading frame YMR210w in Saccharomyces cerevisiae revealed that it possesses both an α/β hydrolase domain (ABHD) and a typical lipase (GXSXG) motif. The purified protein displayed monoacylglycerol (MAG) lipase activity and preferred palmitoyl-MAG. Overexpression of YMR210w in the known MAG lipase mutant yju3Δ clearly revealed that the protein had MAG lipase activity, hence we named the ORF MGL2. Overexpression of YMR210w decreased the cellular triacylglycerol levels. Analysis of the overexpressed strains showed reduction in the lipid droplets number and size. Phenotype studies revealed that the double deletion yju3Δmgl2Δ displayed a growth defect that was partially restored by MGL2 overexpression.
Collapse
Affiliation(s)
- Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|