1
|
Lindner S, Bonin M, Hellmann MJ, Moerschbacher BM. Three intertwining effects guide the mode of action of chitin deacetylase de- and N-acetylation reactions. Carbohydr Polym 2025; 347:122725. [PMID: 39486955 DOI: 10.1016/j.carbpol.2024.122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
Chitosans are promising multi-functional biomolecules for various applications whose performance is dependent on three key structural parameters, including the pattern of acetylation (PA). To date, chitin deacetylases (CDAs) are the only tool to control the PA of chitosan polymers via their specific mode of action during de- or N-acetylation. For a start, this review summarizes the current state of research on the classification of carbohydrate esterase 4 enzymes, the features in sequence and structure of CDAs, and the different PAs produced by different CDAs during de- or N-acetylation. In the main part, we introduce three effects that guide the mode of action of these enzymes: the already established subsite capping effect, the subsite occupation effect, and the subsite preference effect. We show how their interplay controls the PA of CDA products and describe their molecular basis. For one thing, this review aims to equip the reader with the knowledge to understand and analyze CDAs - including a guide for in silico and in vitro analyses. But more importantly, we intend to reform and extend the model explaining their mode of action on chitosans to facilitate a deeper understanding of these important enzymes for biology and biotechnology.
Collapse
Affiliation(s)
- Sandra Lindner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
2
|
Qing L, Gao J, Du L, Liu Y, Guo N, Sun J, Dong H, Mao X. Chitinase and Deacetylase-Based Chitin-Degrading Bacteria: One-Pot Cascade Bioconversion of Chitin to Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23937-23946. [PMID: 39392110 DOI: 10.1021/acs.jafc.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cascade conversion of chitin into soluble and functional chitooligosaccharides has gained great attention. However, the biotransformation route is still limited to the low catalytic performances of chitin deacetylases (CDAs) and complicated procedures. In this study, a CDA from Arthrobacter sp. Jub115 (ArCDA) was identified and characterized, which showed a higher catalytic stability than the reported CDAs, with residual activity of 80.49%, 71.12%, and 56.09% after incubation at 30, 35, and 40 °C for 24 h, respectively. Additionally, ArCDA was identified to have a broad substrate spectrum toward β-chitin and N-acetyl chitooligosaccharides. Moreover, an engineered chitin-degrading bacteria (CDB) with cell-surface-displayed deacetylase ArCDA and chitinase SaChiB was constructed to simplify catalysis procedures, facilitating the chitobiose production of 294.30 ± 16.43 mg/L in 10 h. This study not only identified a CDA with the desirable catalytic performance but also provided a strategy for constructing CDB, facilitating the high-value utilization of chitin.
Collapse
Affiliation(s)
- Liwei Qing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jing Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Liuhuan Du
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Yiying Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
| | - Na Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hao Dong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
3
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
4
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
5
|
Crystal structure of ChbG from Klebsiella pneumoniae reveals the molecular basis of diacetylchitobiose deacetylation. Commun Biol 2022; 5:862. [PMID: 36002585 PMCID: PMC9402603 DOI: 10.1038/s42003-022-03824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The chitobiose (chb) operon is involved in the synthesis of chitooligosaccharide and is comprised of a BCARFG gene cluster. ChbG encodes a chitooligosaccharide deacetylase (CDA) which catalyzes the removal of one acetyl group from N,N’-diacetylchitobiose. It is considered a novel type of CDA due to its lack of sequence homology. Although there are various structural studies of CDAs linked to the kinetic properties of the enzyme, the structural information of ChbG is unavailable. In this study, the crystal structure of ChbG from Klebsiella pneumoniae is provided. The molecular basis of deacetylation of diacetylchitobiose by ChbG is determined based on structural analysis, mutagenesis, biophysical analysis, and in silico docking of the substrate, diacetylchitobiose. This study contributes towards a deeper understanding of chitin and chitosan biology, as well as provides a platform to engineer CDA biocatalysts. Structural and functional characterization of Klebsiella pneumonia ChbG (which lacks sequence homology) reveals the mechanism of chitooligosaccharide processing by ChbG.
Collapse
|
6
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Vallejo I, Jaramillo JD, Agudelo Escobar LM. Submerged culture fermentation of Colletotrichum lindemuthianum DSM 12250 as biotechnological strategy for fungal chitin biotransformation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1988581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Isabella Vallejo
- Industrial and Environmental Microbiology, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Jaramillo
- Industrial and Environmental Microbiology, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
8
|
Mart Nez-Cruz JS, Romero D, Hierrezuelo JS, Thon M, de Vicente A, P Rez-Garc A A. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. THE PLANT CELL 2021; 33:1319-1340. [PMID: 33793825 DOI: 10.1093/plcell/koab011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.
Collapse
Affiliation(s)
- Jes S Mart Nez-Cruz
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Diego Romero
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Jes S Hierrezuelo
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Michael Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca 37185, Spain
| | - Antonio de Vicente
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Alejandro P Rez-Garc A
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| |
Collapse
|
9
|
Li Y, Liu L, Yang J, Yang Q. An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. JOURNAL OF PESTICIDE SCIENCE 2021; 46:43-52. [PMID: 33746545 PMCID: PMC7953033 DOI: 10.1584/jpestics.d20-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylase (CDA) is a key enzyme involved in the modification of chitin and plays critical roles in molting and pupation, which catalyzes the removal of acetyl groups from N-acetyl-D-glucosamine residues in chitin to form chitosan and release acetic acid. Defects in the CDA genes or their expression may lead to stunted insect development and even death. Therefore, CDA can be used as a potential pest control target. However, there are no effective pesticides known to target CDA. Although there has been some exciting research progress on bacterial or fungal CDAs, insect CDA characteristics are less understood. This review summarizes the current understanding of insect CDAs, especially very recent advances in our understanding of crystal structures and the catalytic mechanism. Progress in developing small-molecule CDA inhibitors is also summarized. We hope the information included in this review will help facilitate new pesticide development through a novel action mode, such as targeting CDA.
Collapse
Affiliation(s)
- Yingchen Li
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
11
|
Liu L, Zhou Y, Qu M, Qiu Y, Guo X, Zhang Y, Liu T, Yang J, Yang Q. Structural and biochemical insights into the catalytic mechanisms of two insect chitin deacetylases of the carbohydrate esterase 4 family. J Biol Chem 2019; 294:5774-5783. [PMID: 30755482 PMCID: PMC6463723 DOI: 10.1074/jbc.ra119.007597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
Insect chitin deacetylases (CDAs) catalyze the removal of acetyl groups from chitin and modify this polymer during its synthesis and reorganization. CDAs are essential for insect survival and therefore represent promising targets for insecticide development. However, the structural and biochemical characteristics of insect CDAs have remained elusive. Here, we report the crystal structures of two insect CDAs from the silk moth Bombyx mori: BmCDA1, which may function in cuticle modification, and BmCDA8, which may act in modifying peritrophic membranes in the midgut. Both enzymes belong to the carbohydrate esterase 4 (CE4) family. Comparing their overall structures at 1.98–2.4 Å resolution with those from well-studied microbial CDAs, we found that two unique loop regions in BmCDA1 and BmCDA8 contribute to the distinct architecture of their substrate-binding clefts. These comparisons revealed that both BmCDA1 and BmCDA8 possess a much longer and wider substrate-binding cleft with a very open active site in the center than the microbial CDAs, including VcCDA from Vibrio cholerae and ArCE4A from Arthrobacter species AW19M34-1. Biochemical analyses indicated that BmCDA8 is an active enzyme that requires its substrates to occupy subsites 0, +1, and +2 for catalysis. In contrast, BmCDA1 also required accessory proteins for catalysis. To the best of our knowledge, our work is the first to unveil the structural and biochemical features of insect proteins belonging to the CE4 family.
Collapse
Affiliation(s)
- Lin Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Mingbo Qu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yu Qiu
- Department of Protein Engineering, Biologics Research, Sanofi, Bridgewater, New Jersey 08807
| | - Xingming Guo
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yuebin Zhang
- the Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116024, China
| | - Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Jun Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China; the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Roman DL, Roman M, Sletta H, Ostafe V, Isvoran A. Assessment of the properties of chitin deacetylases showing different enzymatic action patterns. J Mol Graph Model 2019; 88:41-48. [PMID: 30660982 DOI: 10.1016/j.jmgm.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
Abstract
Chitin deacetylases are a group of enzymes catalysing the conversion of chitin to chitosan. Obtaining chitosan with established deacetylation degree and pattern is important for biomedical and biotechnological applications. Understandings of the structural properties of chitin deacetylases and the specificity of their interactions with chitin may conduct to the control of the pattern of deacetylation of chitosan. Our study is focused on the characterization and comparison of the structural and physicochemical properties of chitin deacetylases from fungi and marine bacteria. Despite the low sequences identity for the investigated chitin deacetylases, there are amino acids belonging to their active sites that are strongly conserved. Moreover, they reveal an increased structural similarity of their catalytic domains, reflecting the common biological function of these enzymes. The studied enzymes present dissimilar local physicochemical properties of their catalytic cavities that could be responsible of their distinct deacetylation patterns. Molecular docking studies reflect that deacetylation efficiency is also distinct for the chitin and partially deacetylated chitin oligomers and that N-acetylglucosamine units and some partially deacetylated chitin oligomers could have inhibitory effect against chitin deacetylases belonging to fungi and marine bacteria.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Department of Biology - Chemistry and Advanced Environmental Research Laboratories, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Marin Roman
- Department of Biology - Chemistry and Advanced Environmental Research Laboratories, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Havard Sletta
- SINTEF, Department of Biotechnology, Trondheim, Norway
| | - Vasile Ostafe
- Department of Biology - Chemistry and Advanced Environmental Research Laboratories, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology - Chemistry and Advanced Environmental Research Laboratories, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania.
| |
Collapse
|
13
|
Pascual S, Planas A. Screening Assay for Directed Evolution of Chitin Deacetylases: Application to Vibrio cholerae Deacetylase Mutant Libraries for Engineered Specificity. Anal Chem 2018; 90:10654-10658. [PMID: 30134658 DOI: 10.1021/acs.analchem.8b02729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Not only the degree of acetylation but also the pattern of acetylation of chitosans and chitooligosaccharides (COS) appear to be critical for their biological activities. Protein engineering may expand the toolbox of chitin deacetylases (CDAs) with defined specificities for the enzymatic production of partially deacetylated COS for biotech and biomedical applications. A high-throughput screening (HTS) assay for screening directed evolution libraries is reported. It is based on a fluorescence monitoring assay of the deacetylase activity on COS substrates after capturing the expressed enzyme variants fused to a chitin binding module with chitin-coated magnetic beads. The assay is applied to the screening of random libraries of a Vibrio cholera CDA for increased activity on longer COS substrates.
Collapse
Affiliation(s)
- Sergi Pascual
- Laboratory of Biochemistry , Institut Químic de Sarrià, University Ramon Llull , 08017 Barcelona , Spain
| | - Antoni Planas
- Laboratory of Biochemistry , Institut Químic de Sarrià, University Ramon Llull , 08017 Barcelona , Spain
| |
Collapse
|
14
|
Chitin Deacetylases: Structures, Specificities, and Biotech Applications. Polymers (Basel) 2018; 10:polym10040352. [PMID: 30966387 PMCID: PMC6415152 DOI: 10.3390/polym10040352] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Depolymerization and de-N-acetylation of chitin by chitinases and deacetylases generates a series of derivatives including chitosans and chitooligosaccharides (COS), which are involved in molecular recognition events such as modulation of cell signaling and morphogenesis, immune responses, and host-pathogen interactions. Chitosans and COS are also attractive scaffolds for the development of bionanomaterials for drug/gene delivery and tissue engineering applications. Most of the biological activities associated with COS seem to be largely dependent not only on the degree of polymerization but also on the acetylation pattern, which defines the charge density and distribution of GlcNAc and GlcNH₂ moieties in chitosans and COS. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. The deacetylation patterns are diverse, some CDAs being specific for single positions, others showing multiple attack, processivity or random actions. This review summarizes the current knowledge on substrate specificity of bacterial and fungal CDAs, focusing on the structural and molecular aspects of their modes of action. Understanding the structural determinants of specificity will not only contribute to unravelling structure-function relationships, but also to use and engineer CDAs as biocatalysts for the production of tailor-made chitosans and COS for a growing number of applications.
Collapse
|
15
|
Aranda-Martinez A, Grifoll-Romero L, Aragunde H, Sancho-Vaello E, Biarnés X, Lopez-Llorca LV, Planas A. Expression and specificity of a chitin deacetylase from the nematophagous fungus Pochonia chlamydosporia potentially involved in pathogenicity. Sci Rep 2018; 8:2170. [PMID: 29391415 PMCID: PMC5794925 DOI: 10.1038/s41598-018-19902-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
Chitin deacetylases (CDAs) act on chitin polymers and low molecular weight oligomers producing chitosans and chitosan oligosaccharides. Structurally-defined, partially deacetylated chitooligosaccharides produced by enzymatic methods are of current interest as bioactive molecules for a variety of applications. Among Pochonia chlamydosporia (Pc) annotated CDAs, gene pc_2566 was predicted to encode for an extracellular CE4 deacetylase with two CBM18 chitin binding modules. Chitosan formation during nematode egg infection by this nematophagous fungus suggests a role for their CDAs in pathogenicity. The P. chlamydosporia CDA catalytic domain (PcCDA) was expressed in E. coli BL21, recovered from inclusion bodies, and purified by affinity chromatography. It displays deacetylase activity on chitooligosaccharides with a degree of polymerization (DP) larger than 3, generating mono- and di-deacetylated products with a pattern different from those of closely related fungal CDAs. This is the first report of a CDA from a nematophagous fungus. On a DP5 substrate, PcCDA gave a single mono-deacetylated product in the penultimate position from the non-reducing end (ADAAA) which was then transformed into a di-deacetylated product (ADDAA). This novel deacetylation pattern expands our toolbox of specific CDAs for biotechnological applications, and will provide further insights into the determinants of substrate specificity in this family of enzymes.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, PO box 99, 03080, Alicante, Spain
| | - Laia Grifoll-Romero
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Hugo Aragunde
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Enea Sancho-Vaello
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, PO box 99, 03080, Alicante, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
16
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
17
|
Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep 2017; 7:1746. [PMID: 28496100 PMCID: PMC5431758 DOI: 10.1038/s41598-017-02043-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 02/05/2023] Open
Abstract
Enzymatic conversion of chitin, a β-1,4 linked polymer of N-acetylglucosamine, is of major interest in areas varying from the biorefining of chitin-rich waste streams to understanding how medically relevant fungi remodel their chitin-containing cell walls. Although numerous chitinolytic enzymes have been studied in detail, relatively little is known about enzymes capable of deacetylating chitin. We describe the structural and functional characterization of a 237 residue deacetylase (AnCDA) from Aspergillus nidulans FGSC A4. AnCDA acts on chito-oligomers, crystalline chitin, chitosan, and acetylxylan, but not on peptidoglycan. The Km and kcat of AnCDA for the first deacetylation of penta-N-acetyl-chitopentaose are 72 µM and 1.4 s−1, respectively. Combining mass spectrometry and analyses of acetate release, it was shown that AnCDA catalyses mono-deacetylation of (GlcNAc)2 and full deacetylation of (GlcNAc)3–6 in a non-processive manner. Deacetylation of the reducing end sugar was much slower than deacetylation of the other sugars in chito-oligomers. These enzymatic characteristics are discussed in the light of the crystal structure of AnCDA, providing insight into how the chitin deacetylase may interact with its substrates. Interestingly, AnCDA activity on crystalline chitin was enhanced by a lytic polysaccharide monooxygenase that increases substrate accessibility by oxidative cleavage of the chitin chains.
Collapse
|
18
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
19
|
Hirano T, Shiraishi H, Ikejima M, Uehara R, Hakamata W, Nishio T. Chitin oligosaccharide deacetylase from Shewanella baltica ATCC BAA-1091. Biosci Biotechnol Biochem 2017; 81:547-550. [DOI: 10.1080/09168451.2016.1254529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Chitin oligosaccharide deacetylase (COD) from bacteria that have been examined so far typically comprise two carbohydrate-binding domains (CBDs) and one polysaccharide deacetylase domain. In contrast, Shewanella baltica ATCC BAA-1091 COD (Sb-COD) has only one CBD, yet exhibits chitin-binding properties and substrate specificities similar to those of other CODs.
Collapse
Affiliation(s)
- Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Haruka Shiraishi
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masafumi Ikejima
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Rie Uehara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
20
|
Hirano T, Uehara R, Shiraishi H, Hakamata W, Nishio T. Chitin Oligosaccharide Deacetylase from Shewanella woodyi ATCC51908. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Rie Uehara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Haruka Shiraishi
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|