1
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Shen Y, Huang Z, Yang R, Chen Y, Wang Q, Gao L. Insights into Enhancer RNAs: Biogenesis and Emerging Role in Brain Diseases. Neuroscientist 2023; 29:166-176. [PMID: 34612730 DOI: 10.1177/10738584211046889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enhancers are cis-acting elements that control the transcription of target genes and are transcribed into a class of noncoding RNAs (ncRNAs) termed enhancer RNAs (eRNAs). eRNAs have shorter half-lives than mRNAs and long noncoding RNAs; however, the frequency of transcription of eRNAs is close to that of mRNAs. eRNA expression is associated with a high level of histone mark H3K27ac and a low level of H3K27me3. Although eRNAs only account for a small proportion of ncRNAs, their functions are important. eRNAs can not only increase enhancer activity by promoting the formation of enhancer-promoter loops but also regulate transcriptional activation. Increasing numbers of studies have found that eRNAs play an important role in the occurrence and development of brain diseases; however, further research into eRNAs is required. This review discusses the concept, characteristics, classification, function, and potential roles of eRNAs in brain diseases.
Collapse
Affiliation(s)
- Yuxin Shen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhengyi Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqing Yang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yunlong Chen
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Huang Z, Yu H, Du G, Han L, Huang X, Wu D, Han X, Xia Y, Wang X, Lu C. Enhancer RNA lnc-CES1-1 inhibits decidual cell migration by interacting with RNA-binding protein FUS and activating PPARγ in URPL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:104-112. [PMID: 33738142 PMCID: PMC7941017 DOI: 10.1016/j.omtn.2021.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Unexplained recurrent pregnancy loss (URPL) is a significant reproductive health issue, affecting approximately 5% of pregnancies. Enhancer RNAs (eRNAs) have been reported to play important roles during embryo development and may be related to URPL. To investigate whether and how eRNAs are involved in URPL, we performed RNA sequencing in decidual tissue. Through comprehensive screening and validation, we identified a decidua-enriched eRNA long noncoding-CES1-1 (lnc-CES1-1) enriched in URPL patients and studied its function in decidua-associated cell lines (DACs). Higher expression of lnc-CES1-1 increased the level of inflammatory factors tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) and impaired the cell migration ability, which was attenuated by downregulating peroxisome proliferators-activated receptor γ (PPARγ). Upon activation by signal transduction and activation of transcription 4 (STAT4), lnc-CES1-1 interacted with the transcription factor fused in sarcoma (FUS) to upregulate the expression of PPARγ and affected cell migration. Taken together, these findings provide novel insights into the biological functions of decidua-associated lnc-CES1-1 and the molecular mechanisms underlying URPL. Our findings indicated that lnc-CES1-1 might be a potential candidate biomarker for URPL diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Han
- Department of Obstetrics, Huai-An First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiaomin Huang
- Department of Cardio-Cerebrovascular Disease and Diabetes Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China
| | - Dan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Wang R, Tang Q. Current Advances on the Important Roles of Enhancer RNAs in Molecular Pathways of Cancer. Int J Mol Sci 2021; 22:5640. [PMID: 34073237 PMCID: PMC8198447 DOI: 10.3390/ijms22115640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/08/2023] Open
Abstract
Enhancers are critical genomic elements that can cooperate with promoters to regulate gene transcription in both normal and cancer cells. Recent studies reveal that enhancer regions are transcribed to produce a class of noncoding RNAs referred to as enhancer RNAs (eRNAs). Emerging evidence shows that eRNAs play important roles in enhancer activation and enhancer-driven gene regulation, and the expression of eRNAs may be a critical factor in tumorigenesis. The important roles of eRNAs in cancer signaling pathways are also gradually unveiled, providing a new insight into cancer therapy. Here, we review the roles of eRNAs in regulating cancer signaling pathways and discuss the potential of eRNA-targeted therapy for human cancers.
Collapse
Affiliation(s)
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
7
|
Bhattarai S, Akella A, Gandhi A, Dharap A. Modulation of Brain Pathology by Enhancer RNAs in Cerebral Ischemia. Mol Neurobiol 2021; 58:1482-1490. [PMID: 33201427 PMCID: PMC7933068 DOI: 10.1007/s12035-020-02194-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023]
Abstract
Recent studies have reported widespread stimulus-dependent transcription of mammalian enhancers into noncoding enhancer RNAs (eRNAs), some of which have central roles in the enhancer-mediated induction of target genes and modulation of phenotypic outcomes during development and disease. In cerebral ischemia, the expression and functions of eRNAs are virtually unknown. Here, we applied genome-wide H3K27ac ChIP-seq and genome-wide RNA-seq to identify enhancer elements and stroke-induced eRNAs, respectively, in the mouse cerebral cortex during transient focal ischemia. Following a 1-h middle cerebral artery occlusion (MCAO) and 6 h of reperfusion, we identified 77 eRNAs that were significantly upregulated in stroke as compared to sham, of which 55 were exclusively expressed in stroke. The knockdown of two stroke-induced eRNAs in the mouse brain resulted in significantly larger infarct volumes as compared to controls, suggesting that these eRNAs are involved in the post-stroke neuroprotective response. A preliminary comparison of eRNA expression in the male versus female cortices revealed sex-dependent patterns that may underlie the physiological differences in response to stroke between the two sexes. Together, this study is the first to illuminate the eRNA landscape in the post-stroke cortex and demonstrate the significance of an eRNA in modulating post-stroke cortical brain damage.
Collapse
Affiliation(s)
- Sunil Bhattarai
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Aparna Akella
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Atish Gandhi
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA
| | - Ashutosh Dharap
- Laboratory for Stroke Research and Noncoding RNA Biology, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, 65 James Street, Edison, NJ, 08820, USA.
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| |
Collapse
|
8
|
Lin D, Liu Q, Wang W, Li Y, Li Y, Lin B, Ye Z, Huang J, Yu X, Chen Y, Mei Y, Huang M, Yang W, Zhou J, Liu X, Zeng J. Aberrant expression of miR-16, B12 and CD272 in peripheral blood mononuclear cells from patients with active tuberculosis. Am J Transl Res 2020; 12:6076-6091. [PMID: 33194015 PMCID: PMC7653578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Tuberculosis (TB) immunity is affected by complex immune regulation processes, which involve various immune cells, immune molecules, and cytokines. Here, we evaluated the expression of B12, CD272 and miR-16 in peripheral blood mononuclear cells (PBMC) of patients with active pulmonary tuberculosis. The results showed that monocytes expressing CD272 or B12 were down-regulated in patients with tuberculosis. The expression of B12 and CD272 in T cells and monocytes is related to tuberculosis. In TB patients, the up-regulation of miR-16 was negatively correlated with B12 mRNA expression, miR-16 was mainly expressed in CD14+ monocytes, and CD272 mRNA was mainly expressed in CD19+ B cells. It is worth noting that the overexpression of miR-16 inhibits the expression of CD272 and B12 in monocytes of TB patients. After BCG stimulation, miR-16 expression of CD14+ monocytes was up-regulated and B12 mRNA and CD272 mRNA expressions were down-regulated in TB patients. Finally, we found that miR-16 may participate in the TB immunization process through targeted regulation of B12 expression. These studies indicate that the expression of B12, CD272 and miR-16 in PBMC may be related to tuberculosis.
Collapse
Affiliation(s)
- Dongzi Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Qiankun Liu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Wei Wang
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Yumei Li
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Yinwen Chen
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Yuezhi Mei
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Minyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Weiqin Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Jie Zhou
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Xinguang Liu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| |
Collapse
|
9
|
Park A, Oh S, Jung KL, Choi UY, Lee HR, Rosenfeld MG, Jung JU. Global epigenomic analysis of KSHV-infected primary effusion lymphoma identifies functional MYC superenhancers and enhancer RNAs. Proc Natl Acad Sci U S A 2020; 117:21618-21627. [PMID: 32817485 PMCID: PMC7474655 DOI: 10.1073/pnas.1922216117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enhancers play indispensable roles in cell proliferation and survival through spatiotemporally regulating gene transcription. Active enhancers and superenhancers often produce noncoding enhancer RNAs (eRNAs) that precisely control RNA polymerase II activity. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic gamma-2 herpesvirus that causes Kaposi's sarcoma and primary effusion lymphoma (PEL). It is well characterized that KSHV utilizes host epigenetic machineries to control the switch between two lifecycles, latency and lytic replication. However, how KSHV impacts host epigenome at different stages of viral lifecycle is not well understood. Using global run-on sequencing (GRO-seq) and chromatin-immunoprecipitation sequencing (ChIP-seq), we profiled the dynamics of host transcriptional regulatory elements during latency and lytic replication of KSHV-infected PEL cells. This revealed that a number of critical host genes for KSHV latency, including MYC proto-oncogene, were under the control of superenhancers whose activities were globally repressed upon viral reactivation. The eRNA-expressing MYC superenhancers were located downstream of the MYC gene in KSHV-infected PELs and played a key role in MYC expression. RNAi-mediated depletion or dCas9-KRAB CRISPR inhibition of eRNA expression significantly reduced MYC mRNA level in PELs, as did the treatment of an epigenomic drug that globally blocks superenhancer function. Finally, while cellular IRF4 acted upon eRNA expression and superenhancer function for MYC expression during latency, KSHV viral IRF4 repressed cellular IRF4 expression, decreasing MYC expression and thereby, facilitating lytic replication. These results indicate that KSHV acts as an epigenomic driver that modifies host epigenomic status upon reactivation by effectively regulating host enhancer function.
Collapse
Affiliation(s)
- Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Soohwan Oh
- Graduate Program of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kyle L Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Un Yung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, 30019 Sejong, South Korea
| | - Michael G Rosenfeld
- HHMI, University of California San Diego, La Jolla, CA 92093;
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
10
|
Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol 2020; 7:377. [PMID: 31993419 PMCID: PMC6971116 DOI: 10.3389/fcell.2019.00377] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Enhancers are cis-regulatory elements in the genome that cooperate with promoters to control target gene transcription. Unlike promoters, enhancers are not necessarily adjacent to target genes and can exert their functions regardless of enhancer orientations, positions and spatial segregations from target genes. Thus, for a long time, the question as to how enhancers act in a temporal and spatial manner attracted considerable attention. The recent discovery that enhancers are also abundantly transcribed raises interesting questions about the exact roles of enhancer RNA (eRNA) in gene regulation. In this review, we highlight the process of enhancer transcription and the diverse features of eRNA. We review eRNA functions, which include enhancer-promoter looping, chromatin modifying, and transcription regulating. As eRNA are transcribed from active enhancers, they exhibit tissue and lineage specificity, and serve as markers of cell state and function. Finally, we discuss the unique relationship between eRNA and super enhancers in phase separation wherein eRNA may contribute significantly to cell fate decisions.
Collapse
Affiliation(s)
- Preston R Arnold
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, United States.,Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xian C Li
- Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
11
|
Chang HC, Huang HC, Juan HF, Hsu CL. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation. BMC Genomics 2019; 20:896. [PMID: 31888456 PMCID: PMC6936076 DOI: 10.1186/s12864-019-6293-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Super-enhancer RNAs (seRNAs) are a kind of noncoding RNA transcribed from super-enhancer regions. The regulation mechanism and functional role of seRNAs are still unclear. Although super-enhancers play a critical role in the core transcriptional regulatory circuity of embryonic stem cell (ESC) differentiation, whether seRNAs have similar properties should be further investigated. RESULTS We analyzed cap analysis gene expression sequencing (CAGE-seq) datasets collected during the differentiation of embryonic stem cells (ESCs) to cardiomyocytes to identify the seRNAs. A non-negative matrix factorization algorithm was applied to decompose the seRNA profiles and reveal two hidden stages during the ESC differentiation. We further identified 95 and 78 seRNAs associated with early- and late-stage ESC differentiation, respectively. We found that the binding sites of master regulators of ESC differentiation, including NANOG, FOXA2, and MYC, were significantly observed in the loci of the stage-specific seRNAs. Based on the investigation of genes coexpressed with seRNA, these stage-specific seRNAs might be involved in cardiac-related functions such as myofibril assembly and heart development and act in trans to regulate the co-expressed genes. CONCLUSIONS In this study, we used a computational approach to demonstrate the possible role of seRNAs during ESC differentiation.
Collapse
Affiliation(s)
- Hao-Chun Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Zhang Y, Zheng L, Lao X, Wen M, Qian Z, Liu X, Tang H, Gao F. Hes1 is associated with long non-coding RNAs in colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:459. [PMID: 31700895 DOI: 10.21037/atm.2019.08.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) play important roles in the development and pathophysiology of colorectal cancer (CRC). Our previous study showed that Hes1 was involved in the self-renewal and tumorigenicity of stem-like cancer cells in CRC. Methods ArrayStar Human LncRNA/mRNA Expression Microarray Version 3.0 was used to detect lncRNA expression in CRC tissues compared with their matched non-tumoral tissues. RNA-binding protein immunoprecipitation and sequencing (RIP-seq) assay was used to detect lncRNAs binding to Hes1. Real-time qPCR was used to detect expression of specific lncRNAs in CRC tissues. Results We found significantly up-regulated as well as down-regulated lncRNAs in CRC tissues compared with their matched non-tumoral tissues. We also screened a number of lncRNAs interacting with Hes1 in CRC cells. Interestingly, we found several lncRNAs binding to Hes1 (such as, GNAS-AS1, RP11-89K10.1, and RP11-465L10.10) were up-regulated in CRC tissues showed by the tissue microarray. Next, we confirmed that Hes1 directly interacted with these lncRNAs using RIP-qPCR and RNA pulldown assay. Finally, we verified the expression of these lncRNAs in 32 CRC samples as well as the adjacent non-tumoral tissues using real-time qPCR. Conclusions Based on these, we speculate that Hes1 interacts with one or more lncRNAs which contribute to the development and progression of CRC.
Collapse
Affiliation(s)
- Yuqin Zhang
- Laboratory of Digestive Disease and Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuejun Lao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mingbo Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhipeng Qian
- Laboratory of Digestive Disease and Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin Liu
- Laboratory of Digestive Disease and Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Tang
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Fei Gao
- Laboratory of Digestive Disease and Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.,Department of Physiology and Biomedical Engineering and Gastroenterology Research Unit, Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Ding M, Liu Y, Liao X, Zhan H, Liu Y, Huang W. Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment. J Cancer 2018; 9:2334-2340. [PMID: 30026829 PMCID: PMC6036709 DOI: 10.7150/jca.25829] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022] Open
Abstract
Enhancers are cis-acting elements that have the ability to increase the expression of target genes. Recent studies have shown that enhancers can act as transcriptional units for the production of enhancer RNAs (eRNAs), which are hallmarks of activity enhancers and are involved in the regulation of gene transcription. The in-depth study of eRNAs is of great significance for us to better understand enhancer function and transcriptional regulation in various diseases. Therefore, eRNAs may be a potential therapeutic target for diseases. Here, we review the current knowledge of the characteristics of eRNAs, the molecular mechanisms of eRNAs action, as well as diseases related to dysregulation of eRNAs.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen 518000, Guangdong, China.,Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yuhan Liu
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen 518000, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xinhui Liao
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Hengji Zhan
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen 518000, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
14
|
Ha SD, Reid C, Meshkibaf S, Kim SO. Inhibition of Interleukin 1β (IL-1β) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J Biol Chem 2016; 291:8745-55. [PMID: 26912657 DOI: 10.1074/jbc.m115.695809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Many pathogenic microbes often release toxins that subvert the host's immune responses to render the environment suitable for their survival and proliferation. LeTx is one of the toxins causing immune paralysis by cleaving and inactivating the mitogen-activated protein kinase (MAPK) kinases (MEKs). Here, we show that inhibition of the histone deacetylase 8 (HDAC8) by either the HDAC8-specific inhibitor PCI-34051 or small interference (si)RNAs rendered LeTx-exposed murine macrophages responsive to LPS in pro-IL-1β production. HDAC8 selectively targeted acetylated histone H3 lysine 27 (H3K27Ac), which is known to associate with active enhancers. LeTx induced HDAC8 expression, in part through inhibiting p38 MAPK, which resulted in a decrease of H3K27Ac levels. Inhibition of HDAC8 increased H3K27Ac levels and enhanced NF-κB-mediated pro-IL-1β enhancer and messenger RNA production in LeTx-exposed macrophages. Collectively, this study demonstrates a novel role of HDAC8 in LeTx immunotoxicity and regulation of pro-IL-1β production likely through eRNAs. Targeting HDAC8 could be a strategy for enhancing immune responses in macrophages exposed to LeTx or other toxins that inhibit MAPKs.
Collapse
Affiliation(s)
- Soon-Duck Ha
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Chantelle Reid
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Shahab Meshkibaf
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- From the Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|