1
|
Hong G, Huo Y, Gao Y, Ma L, Li S, Tian T, Zhong H, Li H. Integration of miRNA expression analysis of purified leukocytes and whole blood reveals blood-borne candidate biomarkers for lung cancer. Epigenetics 2024; 19:2393948. [PMID: 39164937 PMCID: PMC11340745 DOI: 10.1080/15592294.2024.2393948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Changes in leukocyte populations may confound the disease-associated miRNA signals in the blood of cancer patients. We aimed to develop a method to detect differentially expressed miRNAs from lung cancer whole blood samples that are not influenced by variations in leukocyte proportions. The Ref-miREO method identifies differential miRNAs unaffected by changes in leukocyte populations by comparing the within-sample relative expression orderings (REOs) of miRNAs from healthy leukocyte subtypes and those from lung cancer blood samples. Over 77% of the differential miRNAs observed between lung cancer and healthy blood samples overlapped with those between myeloid-derived and lymphoid-derived leukocytes, suggesting the potential impact of changes in leukocyte populations on miRNA profile. Ref-miREO identified 16 differential miRNAs that target 19 lung adenocarcinoma-related genes previously linked to leukocytes. These miRNAs showed enrichment in cancer-related pathways and demonstrated high potential as diagnostic biomarkers, with the LASSO regression models effectively distinguishing between healthy and lung cancer blood or serum samples (all AUC > 0.85). Additionally, 12 of these miRNAs exhibited significant prognostic correlations. The Ref-miREO method offers valuable candidates for circulating biomarker detection in cancer that are not affected by changes in leukocyte populations.
Collapse
Affiliation(s)
- Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Yue Huo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yaru Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Shuang Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Tian Tian
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Haijian Zhong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Wang S, Zou C, Lin X, Hu D, Su Y, He H, Zheng X, Zhang L, Huang T, Liao JR, Lin X. RNU12 inhibits gastric cancer progression via sponging miR-575 and targeting BLID. Sci Rep 2023; 13:7523. [PMID: 37160927 PMCID: PMC10169768 DOI: 10.1038/s41598-023-34539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer deaths with 5-year survival ratio of 20%. RNU12 is one of long noncoding RNAs (lncRNAs) regulating the tumor progression. However, how RNU12 affecting GC is not clear. qRT-PCR was utilized for determining the RNU12 expression in cell lines, 113 cases of paired gastric cancer (GC) and their adjacent normal gastric tissues. The biofunction alterations of RNU12 were assessed by its overexpression or knockdown in GC cells. MTT and cloning assay were assayed for the cell proliferation, the flow cytometry for the detection of cell cycle and the wound healing assay (WHA) and transwell invasion assay (TIA) for examining the migration and invasion of cells. The expressions of a set of genes related proliferation and migration were investigated with the Western Blotting (WB). RNA immunoprecipitation (RIP), biotinylated RNA pull-down and dual luciferase reporter tests were used to detect the interactions of RNU12 with miR-575/BLID. The in vivo proliferation and migration ability of RNU12 infected cells were determined in zebrafish system. This study revealed that RNU12 inhibited proliferation, invasion and metastasis by sponging of miR-575 and regulating the downstream BLID and modulated EMT of GC cells. The RNU12/miR-575/BLID axis is likely to be the prognosis biomarkers and drug targets of GC.
Collapse
Affiliation(s)
- Shaoli Wang
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Changyan Zou
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xinyi Lin
- Fujian Medical University, Fuzhou, 350122, China
| | - Dan Hu
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Ying Su
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Huocong He
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiongwei Zheng
- Department of Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Lurong Zhang
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jin-Rong Liao
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, 350014, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Ghobadi MZ, Afsaneh E, Emamzadeh R, Soroush M. Potential miRNA-gene interactions determining progression of various ATLL cancer subtypes after infection by HTLV-1 oncovirus. BMC Med Genomics 2023; 16:62. [PMID: 36978083 PMCID: PMC10045051 DOI: 10.1186/s12920-023-01492-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Adult T-cell Leukemia/Lymphoma (ATLL) is a rapidly progressing type of T-cell non-Hodgkin lymphoma that is developed after the infection by human T-cell leukemia virus type 1 (HTLV-1). It could be categorized into four major subtypes, acute, lymphoma, chronic, and smoldering. These different subtypes have some shared clinical manifestations, and there are no trustworthy biomarkers for diagnosis of them. METHODS We applied weighted-gene co-expression network analysis to find the potential gene and miRNA biomarkers for various ATLL subtypes. Afterward, we found reliable miRNA-gene interactions by identifying the experimentally validated-target genes of miRNAs. RESULTS The outcomes disclosed the interactions of miR-29b-2-5p and miR-342-3p with LSAMP in ATLL_acute, miR-575 with UBN2, miR-342-3p with ZNF280B, and miR-342-5p with FOXRED2 in ATLL_chronic, miR-940 and miR-423-3p with C6orf141, miR-940 and miR-1225-3p with CDCP1, and miR-324-3p with COL14A1 in ATLL_smoldering. These miRNA-gene interactions determine the molecular factors involved in the pathogenesis of each ATLL subtype and the unique ones could be considered biomarkers. CONCLUSION The above-mentioned miRNAs-genes interactions are suggested as diagnostic biomarkers for different ATLL subtypes.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | | | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mona Soroush
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Retraction statement: MicroRNA-575 targets BLID to promote growth and invasion of non-small cell lung cancer cells. FEBS Lett 2022; 596:2717. [PMID: 36222169 DOI: 10.1002/1873-3468.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Gray A, Cui T, Bell EH, McElroy J, Sebastian E, Li F, Geurts M, Liu K, Robe P, Haque SJ, Chakravarti A. MicroRNA-575 acts as a novel oncogene via targeting multiple signaling pathways in glioblastoma. Exp Mol Pathol 2022; 128:104813. [PMID: 35901926 DOI: 10.1016/j.yexmp.2022.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioblastoma (GBM) patients currently face poor survival outcomes with an average survival period of <15 months, while only 3-5% of patients survive longer than 36 months. Although the mechanisms of tumorigenesis are still being elucidated, miRNAs are promising candidates to explore as novel and prognostic biomarkers in GBM. In this study, we identified the association between miR-575 expression and overall survival (OS) of primary GBM patients and undertook functional studies to discern the contribution of miR-575 to GBM tumorigenesis. METHODS Total RNAs were isolated from 254 FFPE GBM tumor samples and miR expression was assayed (simultaneously) using NanoString Technologies. To determine the association between miR-575 and patients' prognosis, Kaplan-Meier, univariable and multivariable Cox regression analyses were performed. Cell proliferation, colony formation, migration assays were conducted to investigate the function of miR-575 in vitro and in vivo. In silico target gene network analysis was performed to identify the putative targets of miR-575 in GBM, which were further verified by luciferase reporter assay, as well as qPCR and immunoblotting. RESULTS Our clinical data (n = 254) show that miR-575 is associated with worse GBM OS by univariable analysis (UVA, HR = 1.27, p-value<0.001) and multivariable (MVA, HR = 1.23, p = 0.007) analysis incorporating critical clinical variables. Functional studies indicated that overexpression of miR-575 significantly increased cell proliferation and migration of GBM cells in vitro, as well as tumor growth in vivo. Subsequent in silico target gene network and mechanistic studies identified CDKN1B/p27 and PTEN, as potential targets of miR-575 in GBM. MicroRNA-575 can also regulate the activity of AKT and ERK pathways in GBM. CONCLUSION miR-575 has prognostic value in GBM, with higher expression associating with worse OS of patients, and contributes to GBM tumorigenesis by regulating multiple signaling pathways in GBM.
Collapse
Affiliation(s)
- Ashley Gray
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Erica Hlavin Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Joseph McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Ebin Sebastian
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Fuhai Li
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marjolein Geurts
- Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Kevin Liu
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pierre Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S Jaharul Haque
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y, Yin L. LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer 2022; 22:1017. [PMID: 36162992 PMCID: PMC9511711 DOI: 10.1186/s12885-022-10104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, 223001, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Retraction: Up-Regulation of MiR-300 Promotes Proliferation and Invasion of Osteosarcoma by Targeting BRD7. PLoS One 2022; 17:e0269904. [PMID: 35675295 PMCID: PMC9176769 DOI: 10.1371/journal.pone.0269904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Retraction: MicroRNA-33b Suppresses Migration and Invasion by Targeting c-Myc in Osteosarcoma Cells. PLoS One 2022; 17:e0269899. [PMID: 35675351 PMCID: PMC9176801 DOI: 10.1371/journal.pone.0269899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Retraction: MicroRNA-137 Upregulation Increases Bladder Cancer Cell Proliferation and Invasion by Targeting PAQR3. PLoS One 2022; 17:e0269903. [PMID: 35675299 PMCID: PMC9176799 DOI: 10.1371/journal.pone.0269903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Retraction: MicroRNA-217 Regulates WASF3 Expression and Suppresses Tumor Growth and Metastasis in Osteosarcoma. PLoS One 2022; 17:e0269901. [PMID: 35675266 PMCID: PMC9176786 DOI: 10.1371/journal.pone.0269901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
|
12
|
Retraction: MicroRNA-153 Inhibits Osteosarcoma Cells Proliferation and Invasion by Targeting TGF-β2. PLoS One 2022; 17:e0269902. [PMID: 35675303 PMCID: PMC9176757 DOI: 10.1371/journal.pone.0269902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Retraction: MicroRNA-410 Suppresses Migration and Invasion by Targeting MDM2 in Gastric Cancer. PLoS One 2022; 17:e0269898. [PMID: 35675286 PMCID: PMC9176785 DOI: 10.1371/journal.pone.0269898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
15
|
Huang TL, Chang CR, Chien CY, Huang GK, Chen YF, Su LJ, Tsai HT, Lin YS, Fang FM, Chen CH. DRP1 contributes to head and neck cancer progression and induces glycolysis through modulated FOXM1/MMP12 axis. Mol Oncol 2022; 16:2585-2606. [PMID: 35313071 PMCID: PMC9251862 DOI: 10.1002/1878-0261.13212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal DRP1 expression has been identified in a variety of human cancers. However, the prognostic potential and mechanistic role of DRP1 in head and neck cancer (HNC) are currently poorly understood. Here, we demonstrated a significant upregulation of DRP1 in HNC tissues, and that DRP1 expression correlates with poor survival of HNC patients. Diminished DRP1 expression suppressed tumor growth and metastasis in both in vitro and in vivo models. DRP1 expression was positively correlated with FOXM1 and MMP12 expression in HNC patient samples, suggesting pathological relevance in the context of HNC development. Moreover, DRP1 depletion affected aerobic glycolysis through the downregulation of glycolytic genes, and overexpression of MMP12 in DRP1‐depleted cells could help restore glucose consumption and lactate production. Using ChIP‐qPCR, we showed that DRP1 modulates FOXM1 expression, which can enhance MMP12 transcription by binding to its promoter. We also showed that miR‐575 could target 3’UTR of DRP1 mRNA and suppress DRP1 expression. Collectively, our study provides mechanistic insights into the role of DRP1 in HNC and highlights the potential of targeting the miR‐575/DRP1/FOXM1/MMP12 axis as a novel therapy for the prevention of HNC progression.
Collapse
Affiliation(s)
- Tai-Lin Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yen Chien
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gong-Kai Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Fan Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Jhongli City, Taiwan
| | - Hsin-Ting Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Sheng Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Fu-Min Fang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Gong J, Jiang J, Qu J, Li J, Chen X, Ruan Z, Lu G, He Y, He X, Sun R. Association between the rs3733846 in the flanking region of miR-143/145 and risk of cervical squamous cell carcinoma. Biomark Med 2021; 15:891-897. [PMID: 34229450 DOI: 10.2217/bmm-2020-0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the effect of rs3733846 in the flanking region of miR-143/145 on susceptibility to cervical squamous cell carcinoma (CSCC). Materials & methods: We collected venous blood samples from 242 CSCC patients and 250 healthy controls. The rs3733846 polymorphism was genotyped by SnaPshot and Sanger sequencing. The expression of miR-143/145 in CSCC tissues was detected by quantitative real-time PCR. Results: The rs3733846 AG genotype was associated with a decreased risk of CSCC in genetic model (AGvs.AA: adjusted odds ratio [OR]: 0.44; 95% CI: 0.30-0.66; p < 0.001). Patients with the rs3733846 AG/GG genotypes had a reduced risk of developing poorly differential status (OR: 0.57; 95% CI: 0.33-0.98; p < 0.04) and lymph node metastasis (OR: 0.49; 95% CI: 0.26-0.92; p < 0.03). Conclusion: The rs3733846 in the flanking region of miR-143/145 was related to the susceptibility of CSCC.
Collapse
Affiliation(s)
- Jianyu Gong
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jike Jiang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jianwen Qu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ju Li
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xin Chen
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhiguo Ruan
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Gangxu Lu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yuxiao He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xiaoshan He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ruifen Sun
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
17
|
Wei G, Li S, Wang P, Wang S, Zhao Y. Altered Expression of miR-575 in Glioma is Related to Tumor Cell Proliferation, Migration, and Invasion. Neuromolecular Med 2021; 24:224-231. [PMID: 34272655 DOI: 10.1007/s12017-021-08679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
Glioma is a kind of brain tumor with low overall survival and treatment success rates in the advanced stage. Evidence has shown microRNA-575 (miR-575) plays an important role in the generation and development of various cancers. This study aimed to explore the function of miR-575 in the prognosis and cell biological behavior of glioma. qRT-PCR was used to evaluate the expression of miR-575 in glioma tissues and cells, Kaplan-Meier survival analysis and Cox regression analysis were used to evaluate the prognostic value. The proliferation ability of glioma cells was determined by MTT assay; the invasion and migration abilities were determined by transwell assays. Compared with normal brain tissues, the expression of miR-575 in glioma tissue cells was significantly up-regulated (P < 0.001). The survival rate of patients in the miR-575 high expression group was significantly lower than that in the low expression group (P = 0.020). In addition, the overexpression of miR-575 promoted the proliferation, migration, and invasion of glioma cells. The results of this study suggested that miR-575 may be a new biomarker for the prognosis of glioma.
Collapse
Affiliation(s)
- Guangxin Wei
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shengjun Li
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Pengcheng Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Shouxian Wang
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China
| | - Yujing Zhao
- Department of Neurosurgery, Tumor Ward, Weifang People's Hospital Brain Hospital, 423 Dongfeng West Street, Weicheng District, Weifang, 261000, Shandong, China.
| |
Collapse
|
18
|
Liu SS, Li Y, Zhang H, Zhang D, Zhang XB, Wang X, Yu Y. The ERα-miR-575-p27 feedback loop regulates tamoxifen sensitivity in ER-positive Breast Cancer. Theranostics 2020; 10:10729-10742. [PMID: 32929377 PMCID: PMC7482812 DOI: 10.7150/thno.46297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer is the most common malignancy, and approximately 70% of breast cancers are estrogen receptor-α (ERα) positive. The anti-estrogen tamoxifen is a highly effective and commonly used treatment for patients with ER+ breast cancer. However, 30% of breast cancer patients fail adjuvant tamoxifen therapy and most of metastatic breast cancer patients develop tamoxifen resistance. Although increasing evidence suggests that microRNA (miRNA) dysregulation influences tamoxifen sensitivity, the mechanism of the cross-talk between miRNA and ERα signaling remains unclear. miR-575 has been reported to be involved in carcinogenesis and progression, however, the role of miR-575 in breast cancer remains limited. The aim of this study was to understand the mechanism of miR-575 in breast cancer tamoxifen resistance. Method: RT-qPCR was employed to assess miR-575 expression in breast cancer tissues and cell lines. The association of miR-575 expression with overall survival in patients with breast cancer was evaluated with KM plotter. Additionally, the effects of miR-575 on breast cancer proliferation and tamoxifen sensitivity were investigated both in vitro and in vivo. Bioinformatic analyses and luciferase reporter assays were performed to validate CDKN1B and BRCA1 as direct targets of miR-31-5p. The ERα binding sites in the miR-575 promoter region was validated with ChIP and luciferase assays. ERα interactions with CDKN1B, cyclin D1 or BRCA1 were determined by IP analysis, and protein expression levels and localization were analyzed by western blotting and immunofluorescence, respectively. Results: miR-575 levels were higher in ER+ breast cancer than in ER- breast cancer and patients with high miR-575 expression had a significantly poorer outcome than those with low miR-575 expression. ERα bound the miR-575 promoter to activate its transcription, and tamoxifen treatment downregulated miR-575 expression in ER+ breast cancer. Overexpression of miR-575 decreased tamoxifen sensitivity by targeting CDKN1B and BRCA1. CDKN1B and BRCA1 were both able to antagonize ERα activity by inhibiting ERα nuclear translocation and interaction with cyclin D1. Furthermore, miR-575 expression was found to be upregulated in ER+ breast cancer cell with acquired tamoxifen resistance, whereas depletion of miR-575 partially re-sensitized these cells to tamoxifen by regulation of CDKN1B. Conclusions: Our data reveal the ERα-miR-575-CDKN1B feedback loop in ER+ breast cancer, suggesting that miR-575 can be used as a prognostic biomarker in patients with ER+ breast cancer, as well as a predictor or a promising target for tamoxifen sensitivity.
Collapse
|
19
|
Abstract
This study aimed to investigate the microRNA (miRNA) profile in primary tumors from conjunctival melanoma with and without subsequent metastatic spread along with their coupled distant metastases to identify miRNAs likely to be involved in metastatic progression. This observational study included 13 patients with metastatic conjunctival melanoma (follow-up: 1-39 years) treated at a Danish referral center. Twenty-five patients with nonmetastatic conjunctival melanoma (follow-up: 5-17 years) were included for comparison. Global miRNA profiling was performed with the Affymetrix GeneChip 4.1 microarray. Taqman qPCR arrays were used for validation. Significant differentially expressed miRNAs were defined as having a false discovery rate of less than 0.05. Primary conjunctival melanoma with and without subsequent metastatic spread clustered separately according to miRNA expression, and 15 miRNAs were found to have significant differential expression. Six miRNAs (hsa-miR-4528, hsa-miR-1270, hsa-miR-1290, hsa-mir-548f-4, hsa-mir-4278, and hsa-miR-34a-3p) were downregulated and nine miRNAs were upregulated (hsa-mir-575, hsa-miR-527, hsa-miR-518a-5p, hsa-miR-6759-5p, hsa-miR-8078, hsa-mir-4501, hsa-mir-622, hsa-mir-4698, and hsa-mir-4654) in primary conjunctival melanoma with subsequent metastatic spread. A comparison of primary conjunctival melanoma with their pair-matched metastases identified six significant differentially expressed miRNAs (hsa-miR-1246 and hsa-miR-302d-5p, hsa-mir-6084, hsa-miR-184, hsa-mir-658, and hsa-mir-4427). qPCR confirmed downregulation of hsa-miR-184 in the distant metastases when compared with the corresponding primary tumor. Primary conjunctival melanoma with and without subsequent metastatic spread separated clearly on the miRNA level when profiled with microarray-based methods. qPCR was able to replicate expression levels of one miRNA (hsa-miR-184) that was downregulated in metastases when compared with corresponding primary tumors.
Collapse
|
20
|
Mikkelsen LH. Molecular biology in conjunctival melanoma and the relationship to mucosal melanoma. Acta Ophthalmol 2020; 98 Suppl 115:1-27. [PMID: 32749776 DOI: 10.1111/aos.14536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lauge Hjorth Mikkelsen
- Eye Pathology Section; Departments of Pathology and Ophthalmology, Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
21
|
Qin Y, Mi W, Huang C, Li J, Zhang Y, Fu Y. Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther 2020; 13:3667-3676. [PMID: 32431517 PMCID: PMC7200254 DOI: 10.2147/ott.s229614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Gallbladder cancer (GBC) is the most common biliary tract malignant cancer worldwide. It has been reported that microRNA-575 (miR-575) was involved in the tumorigenesis of many cancers. However, the role of miR-575 during the progression of GBC remains largely unknown. Methods The expression of miR-575 in GBC cells was detected by quantitative real-time polymerase chain reaction. The proliferation of GBC cells was examined by CCK-8 assay and Ki-67 staining. Apoptosis of GBC cells was measured by flow cytometry, and cell invasion was tested by transwell assay. Moreover, protein expressions in GBC cells were evaluated using Western blot. The target gene of miR-575 was predicted using Targetscan and miRDB. Finally, xenograft tumor model was established to verify the function of miR-575 in GBC in vivo. Results Our findings indicated that miR-575 antagonist decreased the proliferation and invasion of GBC cells. In addition, miR-575 antagonist significantly induced apoptosis of GBC cells via inducing G1 arrest. Meanwhile, p27 Kip1 was found to be a direct target of miR-575 with luciferase reporter assay. Moreover, miR-575 antagonist significantly decreased the expressions of CDK1 and cyclin E1 and upregulated the levels of cleaved caspase3 and p27 Kip1 in GBC cells. Finally, miR-575 antagonist notably suppressed GBC tumor growth in vivo. Conclusion Downregulation of miR-575 significantly inhibited the tumorigenesis of GBC via targeting p27 Kip1. Thus, miR-575 might be a potential novel target for the treatment of GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Wunan Mi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Jian Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, People's Republic of China
| | - Yizheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
22
|
MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett 2020; 469:266-276. [DOI: 10.1016/j.canlet.2019.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
|
23
|
Satomi-Tsushita N, Shimomura A, Matsuzaki J, Yamamoto Y, Kawauchi J, Takizawa S, Aoki Y, Sakamoto H, Kato K, Shimizu C, Ochiya T, Tamura K. Serum microRNA-based prediction of responsiveness to eribulin in metastatic breast cancer. PLoS One 2019; 14:e0222024. [PMID: 31483849 PMCID: PMC6726239 DOI: 10.1371/journal.pone.0222024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023] Open
Abstract
The identification of biomarkers for predicting the responsiveness to eribulin in patients with metastatic breast cancer pretreated with an anthracycline and a taxane remains an unmet need. Here, we established a serum microRNA (miRNA)-based prediction model for the emergence of new distant metastases after eribulin treatment. Serum samples were collected from metastatic breast cancer patients prior to eribulin treatment and comprehensively evaluated by miRNA microarray. The prediction model for estimating eribulin efficacy was established using the logistic LASSO regression model. Serum samples were collected from 147 patients, of which 52 developed at least one new distant metastasis after eribulin monotherapy and 95 did not develop new distant metastases. A combination of eight serum miRNAs (miR-4483, miR-8089, miR-4755-3p, miR-296-3p, miR-575, miR-4710, miR-5698 and miR-3160-5p) predicted the appearance of new distant metastases with an area under the curve of 0.79, sensitivity of 0.69 and specificity of 0.82. The serum levels of miR-8089 and miR-5698 were significantly associated with overall survival after the initiation of eribulin treatment. The present study provides evidence that serum miRNA profiling may serve as a biomarker for the responsiveness to eribulin and for predicting the development of new distant metastases in metastatic breast cancer.
Collapse
Affiliation(s)
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Breast Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Junpei Kawauchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Toray Industries, Inc., Kanagawa, Japan
| | - Satoko Takizawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Toray Industries, Inc., Kanagawa, Japan
| | | | - Hiromi Sakamoto
- Department of Biobank and Tissue Resources, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chikako Shimizu
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Breast Medical Oncology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Wang YN, Xu F, Zhang P, Wang P, Wei YN, Wu C, Cheng SJ. MicroRNA-575 regulates development of gastric cancer by targeting PTEN. Biomed Pharmacother 2019; 113:108716. [DOI: 10.1016/j.biopha.2019.108716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
|
25
|
MiRNA-575 suppresses angiogenesis by targeting Rab5-MEK-ERK pathway in endothelial cells. Biosci Rep 2019; 39:BSR20181218. [PMID: 30333257 PMCID: PMC6328933 DOI: 10.1042/bsr20181218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Hypertension is a major risk factor for the development of atherosclerosis. Increased carotid intima-media thickness (CIMT) is generally considered as an early marker of atherosclerosis. Recently, circulating miRNAs have been implicated both as sensitive biomarkers and key regulators in the development of atherosclerosis. However, the biological functions and molecular regulatory mechanisms for miR-575 on angiogenesis remain unknown. In our study, we first identified up-regulation of circulating miR-575 in plasma of essential hypertensive patients with increased CIMT (iCIMT) compared with those patients with normal CIMT (nCIMT). Furthermore, the overexpression of miR-575 in human umbilical vein endothelial cells (HUVECs) by its mimics significantly inhibited migration and proliferation as well as induction of apoptosis of HUVECs. Inhibition of miR-575 performed the reverse effects of HUVECs. We further suggested Rab5B was the downstream target of miR-575 and knockdown of Rab5B significantly inhibited migration and proliferation of HUVECs. Overexpression of Rab5B largely rescued the miR-575-mediated impairment of angiogenesis processes including: cell proliferation, migration, and apoptosis as well as activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK-ERK) signaling. Therefore, our results uncover a novel role of miR-575 in endothelial cells, implying a potential biomarker and clinical target for atherosclerosis in hypertensive patients.
Collapse
|
26
|
Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:214. [PMID: 30176933 PMCID: PMC6122648 DOI: 10.1186/s13046-018-0853-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022]
Abstract
Background Emerging evidences have indicated that long noncoding RNAs (lncRNAs) play essential roles in the development and progression of cancers. Dysregulation of lncRNA MIR31HG has recently been reported in several types of cancers, and researches on the function of MIR31HG in cancers suggested that MIR31HG could act as either oncogene or tumor suppressor. But the functional involvement of MIR31HG has not been studied in hepatocellular carcinoma (HCC). Methods In this study, MTS assays, colony formation assay, Wound-healing assay, Transwell assy, and tumor xenografts experiments were used to identify biological effects of MIR31HG on HCC cells HCC proliferation and metastasis in vitro and in vivo. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to show the interactions of MIR31HG and miR-575. The bioinformatics methods were completed to find the target genes of miR-575. And Dual-luciferase reporter assay and Western blot analysis were further used to confirm the target gene of miR-575. Results We found that overexpression of MIR31HG obviously suppressed HCC proliferation and metastasis in vitro and in vivo, whereas knockdown of MIR31HG had the opposite effects. Besides, overexpression of MIR31HG significantly decreased the expression of microRNA-575 (miR-575), which plays an oncogenic role in HCC. Moreover, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay revealed that MIR31HG exerted tumor-suppressive functions by binding directly to miR-575, and there was a reciprocal inhibition between MIR31HG and miR-575 in the same RNA-induced silencing complex (RISC). Furthermore, overexpression of MIR31HG enhanced the expression of suppression of tumorigenicity 7 like (ST7L), which was identified as a downstream target gene of miR-575. Thus, MIR31HG positively regulated ST7L expression through sponging miR-575, and acted as tumor suppressor in HCC. Conclusions Overall, our study illuminates the role of MIR31HG as a miRNA sponge in HCC, and sheds new light on lncRNA-directed diagnostics and therapeutics in HCC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0853-9) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
A Novel Mechanism of Doxorubicin Resistance and Tumorigenesis Mediated by MicroRNA-501-5p-Suppressed BLID. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:578-590. [PMID: 30195794 PMCID: PMC6077131 DOI: 10.1016/j.omtn.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023]
Abstract
Doxorubicin is a widely used anthracycline-based anti-tumor agent for both solid and liquid tumors. Mounting evidence has demonstrated that microRNAs (miRNAs) are involved in chemoresistance and tumorigenesis. However, the roles of microRNA-501-5p (miR-501) in doxorubicin resistance and gastric cancer cell proliferation and invasion are still not fully understood. In this study, we identified that BLID (BH3-like motif-containing protein, cell death inducer) was directly regulated by miR-501 at the post-transcriptional level in multiple gastric cancer cell lines. Endogenous miR-501 was higher, whereas BLID was lower, in doxorubicin-resistant gastric cancer SGC7901/ADR cells compared with their parental SGC7901 cells. miR-501 suppressed gastric cancer cell apoptosis, induced resistance to doxorubicin, and enhanced cell proliferation, migration, and invasion. Subcutaneous injection of miR-501 lentivirus-infected SGC7901 cells resulted in rapid growth of xenograft tumors and resistance to doxorubicin treatment, unlike injection of negative miRNA lentivirus-infected SGC7901 cells. This is achieved at least partially by directly targeting BLID and subsequent inactivation of caspase-9 and caspase-3 and phosphorylation of Akt. Taken together, miR-501 induces doxorubicin resistance and enhances the tumorigenesis of gastric cancer cells by suppressing BLID. miR-501 might be a potential target for doxorubicin resistance and gastric cancer therapy.
Collapse
|
28
|
Mo BY, Guo XH, Yang MR, Liu F, Bi X, Liu Y, Fang LK, Luo XQ, Wang J, Bellanti JA, Pan YF, Zheng SG. Long Non-Coding RNA GAPLINC Promotes Tumor-Like Biologic Behaviors of Fibroblast-Like Synoviocytes as MicroRNA Sponging in Rheumatoid Arthritis Patients. Front Immunol 2018; 9:702. [PMID: 29692777 PMCID: PMC5902673 DOI: 10.3389/fimmu.2018.00702] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Rapidly accumulating evidence has now suggested that the long non-coding RNAs (LncRNAs), a large and diverse class of non-coding transcribed RNA molecules with diverse functional roles and mechanisms, play a major role in the pathogenesis of many human inflammatory diseases. Although some LncRNAs are overexpressed in plasma, T cell, and synovial tissues of patients with rheumatoid arthritis (RA), there is a dearth of knowledge in what role these transcripts play in fibroblast-like synoviocytes (FLSs) of these patients. Here, our studies showed that GAPLINC, a newly identified functional LncRNA in oncology, displayed a greater degree of expression in FLSs from RA than in patients with traumatic injury. GAPLINC suppression in RA-FLS cells revealed significant alterations in cell proliferation, invasion, migration, and proinflammatory cytokines production. Additionally, we performed a preliminary bioinformatics analysis of GAPLINC gene sequence in order to find its target molecules, using miRanda, PITA, RNAhybrid algorithms, Kyoto encyclopedia of genes and genomes, and gene ontology analysis. Since the results predicted that some of microRNAs and mRNA may interact with GAPLINC, we simulated a gene co-action network model based on a competitive endogenous RNA theory. Further verification of this model demonstrated that silencing of GAPLINC increased miR-382-5p and miR-575 expression. The results of this study suggest that GAPLINC may function as a novel microRNAs sponging agent affecting the biological characteristics of RA-FLSs. Additionally, GAPLINC may also promote RA-FLS tumor-like behaviors in a miR-382-5p-dependent and miR-575-dependent manner. Based upon these findings, LncRNA GAPLINC may provide a novel valuable therapeutic target for RA patients.
Collapse
Affiliation(s)
- Bi Yao Mo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Hua Guo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Ru Yang
- Department of Internal Medicine, Division of Rheumatology, The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinic Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Kai Fang
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Qing Luo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yun Feng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
29
|
Identification of biomarker microRNAs for predicting the response of colorectal cancer to neoadjuvant chemoradiotherapy based on microRNA regulatory network. Oncotarget 2018; 8:2233-2248. [PMID: 27903980 PMCID: PMC5356795 DOI: 10.18632/oncotarget.13659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Preoperative radiotherapy or chemoradiotherapy has become a standard procedure for treatment of patients with locally advanced colorectal cancer (CRC). However, patients’ responses to treatment are different and personalized. MicroRNAs (miRNAs) are promising biomarkers for predicting personalized responses. In this study, we collected 30 publicly reported miRNAs associated with chemoradiotherapy of CRC. We extracted 46 differentially expressed miRNAs from samples of responders and non-responders to preoperative radiotherapy from the Gene Expression Omnibus dataset (Student's t test, p-value < 0.05 and |fold-change| > 2). We performed a systematic and integrative bioinformatics analysis to identify biomarker miRNAs for prediction of CRC responses to chemoradiotherapy. Using the bioinformatics model, miR-198, miR-765, miR-671-5p, miR-630, miR-371-5p, miR-575, miR-202, miR-483-5p and miR-513a-5p were screened as putative biomarkers for treatment response. Literature validation and functional enrichment analysis were exploited to confirm the reliability of the predicted miRNAs. Quantitative polymerase chain reaction showed that seven of the candidates were significantly differentially expressed between radiosensitive and insensitive CRC cell lines. The unique target genes of miR-198 and miR-765 were altered significantly upon transfection of specific miRNA mimics in the radiosensitive cell line. These results demonstrated the predictive power of our model and suggested that miR-198, miR-765, miR-630, miR-371-5p, miR-575, miR-202 and miR-513a-5p could be used for predicting the response of CRC to preoperative chemoradiotherapy.
Collapse
|
30
|
Liu S, Ge X, Su L, Zhang A, Mou X. MicroRNA-454 inhibits non‑small cell lung cancer cells growth and metastasis via targeting signal transducer and activator of transcription-3. Mol Med Rep 2017; 17:3979-3986. [PMID: 29286124 DOI: 10.3892/mmr.2017.8350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the most common type of cancers and the leading cause of cancer‑related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases. Emerging studies have suggested that microRNAs are dysregulated in NSCLC and serve important roles in NSCLC initiation and development. However, to the best of our knowledge, the expression, roles and molecular mechanism of microRNA‑454 (miR‑454) have not been investigated in NSCLC. In the present study, miR‑454 was demonstrated to be significantly downregulated in NSCLC tissues and cell lines, as assessed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Reduced miR‑454 expression was significantly correlated with aggressive clinicopathological features in NSCLC. In addition, upregulation of miR‑454 suppressed proliferation, migration and invasion NSCLC cells, as assessed by Cell Counting Kit‑8 and in vitro migration and invasion assays, respectively. Furthermore, bioinformatics analysis identified STAT3 as a direct target gene of miR‑454, and STAT3 knockdown was demonstrated to simulate the effects of miR‑454 overexpression in NSCLC. In conclusion, the present study provided convincing evidence that miR‑454 is downregulated in NSCLC, and regulates growth and metastasis by directly targeting STAT3, which suggests that miR‑454 may be an efficient therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuliang Liu
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xingping Ge
- Department of Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Lingfei Su
- Department of Radiotherapy, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Aifeng Zhang
- Department of Outpatient, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xuri Mou
- Department of Thoracic Surgery, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
31
|
You BR, Park WH. Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol Carcinog 2017; 56:2566-2577. [PMID: 28667779 DOI: 10.1002/mc.22701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/15/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) inhibitors, especially suberoylanilide hydroxamic acid (SAHA) induce apoptosis in various cancer cells. Here, we investigated the effect of SAHA on apoptosis in lung cancer cells and addressed the role of reactive oxygen species (ROS), glutathione (GSH), and thioredoxin1 (Trx1) levels in this process. We also identified the miRNAs that down-regulate Trx1 expression at RNA level and thereby influence apoptotic cell death of SAHA increased intracellular ROS levels and promoted apoptotic cell death in cancerous cells but not in non-cancerous normal lung cells. Likewise, SAHA induced GSH depletion specifically in cancerous cells. While N-acetyl cysteine (NAC) reduced ROS level and reversed the effect of SAHA on cell death, L-buthionine sulfoximine (BSO) further enhanced GSH depletion, and promoted cell death. SAHA decreased the mRNA and protein levels of Trx1 in lung cancer cells. Knockdown/suppression of Trx1 intensified apoptosis in SAHA-treated lung cancer cells whereas overexpression of Trx1 prevented the cell death in these cells. SAHA up-regulated the level of miR-129-5p, which binds to 3' untranslated region (3'UTR) of Trx1 and down-regulates Trx1 expression. Down-regulation of Trx1 led to activation of apoptosis-signal regulating kinase (ASK), which induced apoptotic cell death by triggering ASK-JNK or ASK-p38 kinase pathway. In conclusion, changes in ROS and GSH levels in SAHA-treated lung cancer cells partially co-related with cell death. SAHA induced apoptosis via the down-regulation of Trx1, which was regulated by miR-129-5p.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| |
Collapse
|
32
|
Lv QL, Du H, Liu YL, Huang YT, Wang GH, Zhang X, Chen SH, Zhou HH. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep 2017; 38:959-966. [PMID: 28656255 DOI: 10.3892/or.2017.5762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence demonstrates that dysregulated microRNAs (miRNAs) play a critical role in tumorigenesis and progression of various cancers. miR-320b, a member of miR‑320 family, was revealed downregulated in numerous human cancers, including nasopharyngeal carcinoma and colorectal cancer. However, the function of miR‑320b in human glioma remained poorly defined. In this study, we report that miR‑320b was lowly expressed in glioma tissues and cell lines in contrast with controls, being closely correlated with histological malignancy of glioma. Furthermore, patients with low expression of miR‑320b were associated with poor prognostic outcomes. In vitro functional assays indicated that overexpression of miR‑320b could markedly enhance cell apoptosis rate and suppress cell proliferation, migration and invasion. miR-320b mimic impaired cell cycle and metastasis through inhibiting the expression of G1/S transition key regulator Cyclin D1 as well as decreasing the expression level of MMP2 and MMP9. Additionally, upregulation of miR‑320b could markedly promote apoptosis by increasing the level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggested that miR‑320b might serve as a novel prognostic marker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong Du
- Department of Pharmacy, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuang-Tao Huang
- Department of Neurology, The Brain Hospital of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Gui-Hua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410008, P.R. China
| | - Xue Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
33
|
Zhou Y, Han Y, Zhang Z, Shi Z, Zhou L, Liu X, Jia X. MicroRNA-124 upregulation inhibits proliferation and invasion of osteosarcoma cells by targeting sphingosine kinase 1. Hum Cell 2016; 30:30-40. [PMID: 27743351 DOI: 10.1007/s13577-016-0148-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
Increasing evidence has confirmed that the dysregulation of microRNAs (miRNAs) contributes to the proliferation and invasion of human cancers. Previous studies have shown that the dysregulation of miR-124 is in numerous cancers. However, the roles of miR-124 in human osteosarcoma (OS) have not been well clarified. Therefore, this study was to investigate the biological functions and molecular mechanisms of miR-124 in OS cell lines, discussing whether it could be a therapeutic biomarker of OS in the future. In this study, our results demonstrated that miR-124 was down-regulated in OS cell lines and tissues. Furthermore, the low level of miR-124 was associated with increased expression of Sphingosine kinase 1 (SPHK1) in OS cells and tissues. Up-regulation of miR-124 significantly inhibited cell proliferation, invasion, and MMP-2 and -9 expressions of OS cells. Bioinformatics analysis predicted that the SPHK1 was a potential target of miR-124. Further study by luciferase reporter assay demonstrated that miR-124 could directly target SPHK1. Overexpression of SPHK1 in OS cells transfected with miR-124 mimic partially reversed the inhibitory of miR-124. In conclusion, miR-124 inhibited cell proliferation and invasion in OS cells by downregulation of SPHK1, and that downregulation of SPHK1 was essential for the miR-124-inhibited cell invasion and in OS cells.
Collapse
Affiliation(s)
- Yan Zhou
- Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China
| | - Yanzhen Han
- Department of General Surgery V, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China.
| | - Zhitao Zhang
- Laboratory Medicine, Sixth Hospital of Handan, Handan, 056000, Hebei, People's Republic of China
| | - Zhe Shi
- Department of General Surgery V, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China
| | - Liyuan Zhou
- Department of General Surgery V, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China
| | - Xiaohong Liu
- Department of General Surgery V, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China
| | - Xiaoyan Jia
- Department of General Surgery V, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China
| |
Collapse
|
34
|
Effect and molecular mechanism of mir-146a on proliferation of lung cancer cells by targeting and regulating MIF gene. ASIAN PAC J TROP MED 2016; 9:806-11. [DOI: 10.1016/j.apjtm.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
|
35
|
Abstract
Background Chemokines are a family of small proteins secreted by cells with chemotactic activity, and they play important roles in cell adhesion. However, the expression of chemokine XCL2 and CX3CL1 in lung cancers in different pathological stages remains unclear. Material/Methods XCL2 and CX3CL1 expression in lung cancers and adjacent non-cancerous tissues was detected by quantitative PCR and ELISA. The relative expression of both chemokines in lung cancers in different pathological stages was compared by immunohistochemical assay. Results The relative expression level of XCL2 and CX3CL1 in lung cancer was significantly higher compared with adjacent normal tissues (P<0.001). The expression level of both chemokines was significantly increased with higher pathological stages, as indicated by immunohistochemical assay (P<0.05 or P <0.001). Their expression level in cancers with higher numbers of metastatic lymph nodes was also significantly increased compared with cancers with lower numbers of metastatic lymph nodes (P<0.05 or P<0.001). Conclusions The expression of XCL2 and CX3CL1 increases with increasing degree of malignancy, indicating that both chemokines might be important targets in gene therapy for lung cancer.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Heyun Xu
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Kewei Ni
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xuming Ni
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jian Shen
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
36
|
Hubaux R, Vandermeers F, Cosse JP, Crisanti C, Kapoor V, Albelda SM, Mascaux C, Delvenne P, Hubert P, Willems L. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models. ERJ Open Res 2015; 1:00028-2015. [PMID: 27730151 PMCID: PMC5005116 DOI: 10.1183/23120541.00028-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. Valproic acid improves second-line regimen of SCLC response in preclinical modelshttp://ow.ly/Rsyd8
Collapse
Affiliation(s)
- Roland Hubaux
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Fabian Vandermeers
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Jean-Philippe Cosse
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium
| | - Cecilia Crisanti
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Veena Kapoor
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Céline Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Marseille, France
| | | | - Pascale Hubert
- Experimental Pathology, GIGA-Cancer, ULg, Liège, Belgium
| | - Luc Willems
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium
| |
Collapse
|