1
|
Pham LC, Weller L, Gann CN, Schumacher KM, Vlassak S, Swanson T, Highsmith K, O'Brien BJ, Nash S, Aaroe A, de Groot JF, Majd NK. Prolonged complete response to adjuvant tepotinib in a patient with newly diagnosed disseminated glioblastoma harboring mesenchymal-epithelial transition fusion. Oncologist 2024:oyae100. [PMID: 38815166 DOI: 10.1093/oncolo/oyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The prognosis of patients with glioblastoma (GBM) remains poor despite current treatments. Targeted therapy in GBM has been the subject of intense investigation but has not been successful in clinical trials. The reasons for the failure of targeted therapy in GBM are multifold and include a lack of patient selection in trials, the failure to identify driver mutations, and poor blood-brain barrier penetration of investigational drugs. Here, we describe a case of a durable complete response in a newly diagnosed patient with GBM with leptomeningeal dissemination and PTPRZ1-MET fusion who was treated with tepotinib, a brain-penetrant MET inhibitor. This case of successful targeted therapy in a patient with GBM demonstrates that early molecular testing, identification of driver molecular alterations, and treatment with brain-penetrant small molecule inhibitors have the potential to change the outcome in select patients with GBM.
Collapse
Affiliation(s)
- Lily C Pham
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Lauryn Weller
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Todd Swanson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kaitlin Highsmith
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sebnem Nash
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John F de Groot
- Department of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Crepaldi T, Gallo S, Comoglio PM. The MET Oncogene: Thirty Years of Insights into Molecular Mechanisms Driving Malignancy. Pharmaceuticals (Basel) 2024; 17:448. [PMID: 38675409 PMCID: PMC11054789 DOI: 10.3390/ph17040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The discovery and subsequent research on the MET oncogene's role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the MET tyrosine kinase activation mechanism and its downstream signaling cascade. Over the past thirty years, research has established the importance of HGF/MET signaling in normal cellular processes, such as cell dissociation, migration, proliferation, and cell survival. Notably, genetic alterations that lead to the continuous activation of MET, known as constitutive activation, have been identified as oncogenic drivers in various cancers. The genetic lesions affecting MET, such as exon skipping, gene amplification, and gene rearrangements, provide valuable targets for therapeutic intervention. Moreover, the implications of MET as a resistance mechanism to targeted therapies emphasize the need for combination treatments that include MET inhibitors. The intriguing "flare effect" phenomenon, wherein MET inhibition can lead to post-treatment increases in cancer cell proliferation, underscores the dynamic nature of cancer therapeutics. In human tumors, increased protein expression often occurs without gene amplification. Various mechanisms may cause an overexpression: transcriptional upregulation induced by other oncogenes; environmental factors (such as hypoxia or radiation); or substances produced by the reactive stroma, such as inflammatory cytokines, pro-angiogenic factors, and even HGF itself. In conclusion, the journey to understanding MET's involvement in cancer onset and progression over the past three decades has not only deepened our knowledge, but has also paved the way for innovative therapeutic strategies. Selective pharmacological inactivation of MET stands as a promising avenue for achieving cancer remission, particularly in cases where MET alterations are the primary drivers of malignancy.
Collapse
Affiliation(s)
- Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (T.C.); (S.G.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (T.C.); (S.G.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Paolo Maria Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|
3
|
Sun D, Xing X, Wang Y, Hou H. MET fusions are targetable genomic variants in the treatment of advanced malignancies. Cell Commun Signal 2024; 22:20. [PMID: 38195556 PMCID: PMC10775437 DOI: 10.1186/s12964-023-01454-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Targeted therapy for malignancies has developed rapidly in recent years, benefiting patients harboring genetic mutations sensitive to relevant tyrosine kinase inhibitors (TKIs). With the development of targeted sequencing techniques, an increasing number of detectable genomic alterations in malignancies, including MET fusions, have been revealed. MET fusions, although rare among malignancies, might be functional driver genes that participate in activating downstream signaling pathways and promoting cell proliferation. Therefore, it is believed that MET fusions could be targetable genomic variants of MET, and inhibition of MET is considered an optionable therapeutic choice for patients harboring MET fusions. According to the summary presented in this review, we recommend MET-TKIs as suitable treatment agents for patients harboring primary MET fusions. For patients harboring acquired MET fusions after the development of resistance to TKIs targeting primary genomic alterations, such as sensitive EGFR mutations, treatment with a MET-TKI alone or in combination with TKIs targeting primary genomic alterations, such as EGFR-TKIs, is hypothesized to be a reasonable option for salvage treatment. In summary, MET fusions, despite their low incidence, should be taken into consideration when developing treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliation Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
4
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
5
|
Papadimitriou E, Kanellopoulou VK. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int J Mol Sci 2023; 24:ijms24098093. [PMID: 37175798 PMCID: PMC10178973 DOI: 10.3390/ijms24098093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasiliki K Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
In silico validation of RNA-Seq results can identify gene fusions with oncogenic potential in glioblastoma. Sci Rep 2022; 12:14439. [PMID: 36002559 PMCID: PMC9402576 DOI: 10.1038/s41598-022-18608-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Collapse
|
7
|
Ahmadi S, Sukprasert P, Vegesna R, Sinha S, Schischlik F, Artzi N, Khuller S, Schäffer AA, Ruppin E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat Commun 2022; 13:1613. [PMID: 35338126 PMCID: PMC8956718 DOI: 10.1038/s41467-022-29154-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets of CAR-T, conjugated antibodies or coated nanoparticle therapies. We find that in most cancer types, personalized combinations composed of at most four targets are then sufficient for killing at least 80% of tumor cells while sparing at least 90% of nontumor cells in the tumor microenvironment. However, as more stringent and selective killing is required, the number of targets needed rises rapidly. Emerging individual targets include PTPRZ1 for brain and head and neck cancers and EGFR in multiple tumor types. In sum, this study provides a computational estimate of the identity and number of targets needed in combination to target cancers selectively and precisely.
Collapse
Affiliation(s)
- Saba Ahmadi
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Pattara Sukprasert
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Rahulsimham Vegesna
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, 02139, USA
| | - Samir Khuller
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Chai RC, Liu X, Pang B, Liu YQ, Li JJ, Li YF, Zhao Z, Du J, Bao ZS, Jiang T. Recurrent PTPRZ1-MET fusion and a high occurrence rate of MET exon 14 skipping in brain metastases. Cancer Sci 2021; 113:796-801. [PMID: 34812554 PMCID: PMC8819346 DOI: 10.1111/cas.15211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022] Open
Abstract
Identifying molecular features is an essential component of the management and targeted therapy of brain metastases (BMs). The molecular features are different between primary lung cancers and BMs of lung cancer. Here we report the DNA and RNA mutational profiles of 43 pathological samples of BMs. In addition to previously reported mutational events associated with targeted therapy, PTPRZ1‐MET, which was previously exclusively identified in glioma, was present in two cases of BMs of lung cancer. Furthermore, MET exon 14 skipping may be more common (6/37 cases) in BMs of lung cancer than the frequency previously reported in lung cancer. These findings highlight the clinical significance of targeted DNA plus RNA sequencing for BMs and suggest PTPRZ1‐MET and MET exon 14 skipping as critical molecular events that may serve as targets of targeted therapy in BMs.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jing-Jun Li
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yang-Fang Li
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiang Du
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhao Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
10
|
Hiemenz MC, Skrypek MM, Cotter JA, Biegel JA. Novel TRIM24-MET Fusion in a Neonatal Brain Tumor. JCO Precis Oncol 2019; 3:1-6. [DOI: 10.1200/po.18.00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Matthew C. Hiemenz
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Jennifer A. Cotter
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jaclyn A. Biegel
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Qian Z, Li Y, Sun Z, Fan X, Xu K, Wang K, Li S, Zhang Z, Jiang T, Liu X, Wang Y. Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction. Aging (Albany NY) 2019; 10:2884-2899. [PMID: 30362964 PMCID: PMC6224242 DOI: 10.18632/aging.101594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022]
Abstract
Objective: We aimed to identify a radiomic signature to be used as a noninvasive biomarker of prognosis in patients with lower-grade gliomas (LGGs) and to reveal underlying biological processes through comprehensive radiogenomic investigation. Methods: We extracted 55 radiomic features from T2-weighted images of 233 patients with LGGs (training cohort: n = 85; validation cohort: n = 148). Univariate Cox regression and linear risk score formula were applied to generate a radiomic-based signature. Gene ontology analysis of highly expressed genes in the high-risk score group was conducted to establish a radiogenomic map. A nomogram was constructed for individualized survival prediction. Results: The six-feature radiomic signature stratified patients in the training cohort into low- or high-risk groups for overall survival (P = 0.0018). This result was successfully verified in the validation cohort (P = 0.0396). Radiogenomic analysis revealed that the prognostic radiomic signature was associated with hypoxia, angiogenesis, apoptosis, and cell proliferation. The nomogram resulted in high prognostic accuracy (C-index: 0.92, C-index: 0.70) and favorable calibration for individualized survival prediction in the training and validation cohorts. Conclusions: Our results suggest a great potential for the use of radiomic signature as a biological surrogate in providing prognostic information for patients with LGGs.
Collapse
Affiliation(s)
- Zenghui Qian
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yiming Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Xu
- Chinese Academy of Sciences, Institute of Automation, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Matjašič A, Zupan A, Boštjančič E, Pižem J, Popović M, Kolenc D. A novel PTPRZ1-ETV1 fusion in gliomas. Brain Pathol 2019; 30:226-234. [PMID: 31381204 DOI: 10.1111/bpa.12776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
The aggressive nature of malignant gliomas and their genetic and clinical heterogeneity present a major challenge in their diagnosis and treatment. Development of targeted therapy brought attention on detecting novel gene fusions, since they represent promising therapeutic targets (eg, TRK inhibitors in NTRK fusion-positive tumors). Using targeted next-generation sequencing, we prospectively analyzed 205 primary brain tumors and detected a novel PTPRZ1-ETV1 fusion transcript in 11 of 191 (5.8%) gliomas, including nine glioblastomas, one anaplastic oligodendroglioma and one pilocytic astrocytoma. PTPRZ1-ETV1 fusion was confirmed by RT-PCR followed by Sanger sequencing, and in-silico analysis predicted a potential driver role. The newly detected fusion consists of the PTPRZ1 promoter in frame with the highly conserved DNA-binding domain of ETV1 transcription factor. The ETV1 and PTPRZ1 genes are known oncogenes, involved in processes of tumor development. ETV1 is a member of the ETS family of transcription factors, already known oncogenic drivers in Ewing sarcoma, prostate cancer and gastrointestinal stromal tumors, but not in gliomas. Its overexpression contributes to tumor growth and more aggressive tumor behavior. PTPRZ1 is already considered to be a tumor growth promoting oncogene in gliomas. In 8%-16% of gliomas, PTPRZ1 is fused to the MET oncogene, resulting in a PTPRZ1-MET fusion, which is associated with poorer prognosis but is also a positive predictive biomarker for treatment with kinase inhibitors. In view of the oncogenic role that the two fusion partners, PTPRZ1 and ETV1, exhibit in other malignancies, PTPRZ1-ETV1 fusion might present a novel potential therapeutic target in gliomas. Although histopathological examination of PTPRZ1-ETV1 fusion-positive gliomas did not reveal any specific or unique pathological features, and the follow-up period was too short to assess prognostic value of the fusion, careful monitoring of patients and their response to therapy might provide additional insights into the prognostic and predictive value of this novel fusion.
Collapse
Affiliation(s)
- Alenka Matjašič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Zupan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Popović
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Kolenc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Xia Z, Ouyang D, Li Q, Li M, Zou Q, Li L, Yi W, Zhou E. The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. J Cancer 2019; 10:1663-1674. [PMID: 31205522 PMCID: PMC6548002 DOI: 10.7150/jca.28231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Available studies demonstrate that receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) is expressed in different tumor tissues, and functions in cell proliferation, cell adhesion and migration, epithelial-to-mesenchymal transition, cancer stem cells and treatment resistance by interacting with or binding to several molecules. These included pleiotrophin (PTN), midkine, interleukin-34, β-catenin, VEGF, NF-κB, HIF-2, PSD-95, MAGI-3, contactin and ErbB4. PTPRZ1 was involved in survival signaling and could predict the prognosis of several tumors. This review discusses: the current knowledge about PTPRZ1, its expression, co-receptors, ligands, functions, signaling pathway, prognostic values and therapeutic agents that target PTPRZ1.
Collapse
Affiliation(s)
- Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengjie Ouyang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Moyun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lun Li
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Raghav K, Bailey AM, Loree JM, Kopetz S, Holla V, Yap TA, Wang F, Chen K, Salgia R, Hong D. Untying the gordion knot of targeting MET in cancer. Cancer Treat Rev 2018; 66:95-103. [PMID: 29730462 DOI: 10.1016/j.ctrv.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
Despite compelling evidence backing the crucial role of a dysregulated MET axis in cancer and a myriad of agents targeting this pathway in active clinical development, the therapeutic value of MET inhibition in cancer oncology remains to be established. Although a series of disappointing clinical trials, at first, lessened fervor for targeting this pathway, investigations continue unabated with a number of novel active compounds entering clinical trials. Suboptimal designs which lacked biomarker selection have been the main reason for these early failures and this has stimulated a more biomarker enriched approach lately. Fresh insights into the mechanics of diverse MET aberrations (amplifications and mutations) have allowed trial enrichment for appropriate patients in appropriate disease settings. Development of MET inhibition as a therapeutic strategy in cancer has been a lesson in itself reflecting the challenging opportunities enclosed in the genetic landscape of cancer. Here, we will review the status of MET targeted therapy in development as it stands today, discuss emerging paradigms in MET inhibition and theorize on concepts for future development. We venture to propose that in spite of early disappointments, the future of this therapeutic strategy is promising with use of appropriate predictive biomarker in the right clinical context.
Collapse
Affiliation(s)
- Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann Marie Bailey
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Timothy Anthony Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fang Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken Chen
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
15
|
Xu T, Wang H, Huang X, Li W, Huang Q, Yan Y, Chen J. Gene Fusion in Malignant Glioma: An Emerging Target for Next-Generation Personalized Treatment. Transl Oncol 2018; 11:609-618. [PMID: 29571074 PMCID: PMC6071515 DOI: 10.1016/j.tranon.2018.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant gliomas are heterogeneous diseases in genetic basis. The development of sequencing techniques has identified many gene rearrangements encoding novel oncogenic fusions in malignant glioma to date. Understanding the gene fusions and how they regulate cellular processes in different subtypes of glioma will shed light on genomic diagnostic approaches for personalized treatment. By now, studies of gene fusions in glioma remain limited, and no medication has been approved for treating the malignancy harboring gene fusions. This review will discuss the current characterization of gene fusions occurring in both adult and pediatric malignant gliomas, their roles in oncogenesis, and the potential clinical implication as therapeutic targets.
Collapse
Affiliation(s)
- Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hongxiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoquan Huang
- Center of Evidence-based Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiqing Li
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qilin Huang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yong Yan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Juxiang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
16
|
The multiple paths towards MET receptor addiction in cancer. Oncogene 2018; 37:3200-3215. [PMID: 29551767 DOI: 10.1038/s41388-018-0185-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
Targeted therapies against receptor tyrosine kinases (RTKs) are currently used with success on a small proportion of patients displaying clear oncogene activation. Lung cancers with a mutated EGFR provide a good illustration. The efficacy of targeted treatments relies on oncogene addiction, a situation in which the growth or survival of the cancer cells depends on a single deregulated oncogene. MET, a member of the RTK family, is a promising target because it displays many deregulations in a broad panel of cancers. Although clinical trials having evaluated MET inhibitors in large populations have yielded disappointing results, many recent case reports suggest that MET inhibition may be effective in a subset of patients with unambiguous MET activation and thus, most probably, oncogene addiction. Interestingly, preclinical studies have revealed a particularity of MET addiction: it can arise through several mechanisms, and the mechanism involved can differ according to the cancer type. The present review describes the different mechanisms of MET addiction and their consequences for diagnosis and therapeutic strategies. Although in each cancer type MET addiction affects a restricted number of patients, pooling of these patients across all cancer types yields a targetable population liable to benefit from addiction-targeting therapies.
Collapse
|
17
|
Tumour exosomes from cells harbouring PTPRZ1-MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene 2017; 36:5369-5381. [PMID: 28504721 PMCID: PMC5611480 DOI: 10.1038/onc.2017.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 02/12/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022]
Abstract
Exosomes are carriers of pro-tumorigenic factors that participate in glioblastoma (GBM) progression, and many fusion genes are strong driver mutations in neoplasia and are involved in tumorigenesis. However, the ability of fusion genes to be transduced by exosomes is unknown. We characterized exosomes from GBM cells harbouring and not harbouring PTPRZ1–MET fusion (ZM fusion). We also determined the effect of the exosomes from ZM fusion cells (ZM exosomes) on pro-oncogenic secretions and showed that ZM exosomes are internalized by the recipient cells. In addition, we studied the effect of ZM exosome-mediated intercellular communication in the GBM microenvironment. MET proto-oncogene expression was higher in ZM exosomes. Moreover, phosphorylated MET was detected only in ZM exosomes and not in exosomes released by non-ZM fusion GBM cells. ZM exosomes transferred to non-ZM fusion GBM cells and normal human astrocytes altered gene expression and induced epithelial–mesenchymal transition. The uptake of ZM exosomes also induced an exosome-dependent phenotype defined by GBM cell migration and invasion, neurosphere growth and angiogenesis. In addition, ZM exosomes conferred temozolomide resistance to the GBM cells, and exosome-derived ZM fusion network proteins targeted multiple pro-oncogenic effectors in recipient cells within the GBM microenvironment. Our findings show that exosomes mediate the aggressive character of GBM and demonstrate the role of ZM fusion in the exacerbation of this effect. These findings have possible implications for the foundation of gene fusion-based therapy for managing GBM.
Collapse
|
18
|
Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci Data 2017; 4:170024. [PMID: 28291232 PMCID: PMC5349247 DOI: 10.1038/sdata.2017.24] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
Gliomas are the most common and lethal intracranial tumours. RNA sequencing technologies and advanced data analyses recently enabled the characterization of transcriptomic information, including protein-coding gene expression, non-coding gene expression, alternative splicing, and fusion gene detection, to facilitate detection of diseases and altered phenotypes. As a part of the Chinese Glioma Genome Atlas (CGGA) project, our aim was to delineate comprehensive transcriptome profiling in the malignant progression of human gliomas. Three hundred twenty five gliomas with different grades were collected over the past twelve years. Using the Illumina HiSeq 2,000 system, over 92 million high quality 101-bp paired-end reads were generated per sample, yielding a total of 30 billion reads. This comprehensive dataset will be useful to deepen the comprehensive understanding of gliomas, providing an opportunity to generate new therapies, diagnoses, and preventive strategies.
Collapse
Affiliation(s)
- Zheng Zhao
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Fanlin Meng
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wen Wang
- Beijing Neurosurgical Institute, Beijing 100050, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Beijing 100050, China
| | | | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing 100050, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.,Centre of Brain Tumour, Beijing Institute for Brain Disorders, Beijing 100069, China.,China National Clinical Research Centre for Neurological Diseases, Beijing 100050, China
| |
Collapse
|