1
|
Junier I, Ghobadpour E, Espeli O, Everaers R. DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling. Front Microbiol 2023; 14:1192831. [PMID: 37965550 PMCID: PMC10642903 DOI: 10.3389/fmicb.2023.1192831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
DNA supercoiling is central to many fundamental processes of living organisms. Its average level along the chromosome and over time reflects the dynamic equilibrium of opposite activities of topoisomerases, which are required to relax mechanical stresses that are inevitably produced during DNA replication and gene transcription. Supercoiling affects all scales of the spatio-temporal organization of bacterial DNA, from the base pair to the large scale chromosome conformation. Highlighted in vitro and in vivo in the 1960s and 1970s, respectively, the first physical models were proposed concomitantly in order to predict the deformation properties of the double helix. About fifteen years later, polymer physics models demonstrated on larger scales the plectonemic nature and the tree-like organization of supercoiled DNA. Since then, many works have tried to establish a better understanding of the multiple structuring and physiological properties of bacterial DNA in thermodynamic equilibrium and far from equilibrium. The purpose of this essay is to address upcoming challenges by thoroughly exploring the relevance, predictive capacity, and limitations of current physical models, with a specific focus on structural properties beyond the scale of the double helix. We discuss more particularly the problem of DNA conformations, the interplay between DNA supercoiling with gene transcription and DNA replication, its role on nucleoid formation and, finally, the problem of scaling up models. Our primary objective is to foster increased collaboration between physicists and biologists. To achieve this, we have reduced the respective jargon to a minimum and we provide some explanatory background material for the two communities.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
| | - Elham Ghobadpour
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralf Everaers
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| |
Collapse
|
2
|
The Spatial Organization of Bacterial Transcriptional Regulatory Networks. Microorganisms 2022; 10:microorganisms10122366. [PMID: 36557619 PMCID: PMC9787925 DOI: 10.3390/microorganisms10122366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The transcriptional regulatory network (TRN) is the central pivot of a prokaryotic organism to receive, process and respond to internal and external environmental information. However, little is known about its spatial organization so far. In recent years, chromatin interaction data of bacteria such as Escherichia coli and Bacillus subtilis have been published, making it possible to study the spatial organization of bacterial transcriptional regulatory networks. By combining TRNs and chromatin interaction data of E. coli and B. subtilis, we explored the spatial organization characteristics of bacterial TRNs in many aspects such as regulation directions (positive and negative), central nodes (hubs, bottlenecks), hierarchical levels (top, middle, bottom) and network motifs (feed-forward loops and single input modules) of the TRNs and found that the bacterial TRNs have a variety of stable spatial organization features under different physiological conditions that may be closely related with biological functions. Our findings provided new insights into the connection between transcriptional regulation and the spatial organization of chromosome in bacteria and might serve as a factual foundation for trying spatial-distance-based gene circuit design in synthetic biology.
Collapse
|
3
|
Varoquaux N, Lioy VS, Boccard F, Junier I. Computational Tools for the Multiscale Analysis of Hi-C Data in Bacterial Chromosomes. Methods Mol Biol 2022; 2301:197-207. [PMID: 34415537 DOI: 10.1007/978-1-0716-1390-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Just as in eukaryotes, high-throughput chromosome conformation capture (Hi-C) data have revealed nested organizations of bacterial chromosomes into overlapping interaction domains. In this chapter, we present a multiscale analysis framework aiming at capturing and quantifying these properties. These include both standard tools (e.g., contact laws) and novel ones such as an index that allows identifying loci involved in domain formation independently of the structuring scale at play. Our objective is twofold. On the one hand, we aim at providing a full, understandable Python/Jupyter-based code which can be used by both computer scientists and biologists with no advanced computational background. On the other hand, we discuss statistical issues inherent to Hi-C data analysis, focusing more particularly on how to properly assess the statistical significance of results. As a pedagogical example, we analyze data produced in Pseudomonas aeruginosa, a model pathogenetic bacterium. All files (codes and input data) can be found on a GitHub repository. We have also embedded the files into a Binder package so that the full analysis can be run on any machine through Internet.
Collapse
Affiliation(s)
| | - Virginia S Lioy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Ivan Junier
- TIMC-IMAG, CNRS, Univ. Grenoble Alpes, Grenoble, France.
| |
Collapse
|
4
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Walter JC, Lepage T, Dorignac J, Geniet F, Parmeggiani A, Palmeri J, Bouet JY, Junier I. Supercoiled DNA and non-equilibrium formation of protein complexes: A quantitative model of the nucleoprotein ParBS partition complex. PLoS Comput Biol 2021; 17:e1008869. [PMID: 33861734 PMCID: PMC8092679 DOI: 10.1371/journal.pcbi.1008869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/03/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
ParABS, the most widespread bacterial DNA segregation system, is composed of a centromeric sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding proteins. Hundreds of ParB proteins assemble dynamically to form nucleoprotein parS-anchored complexes that serve as substrates for ParA molecules to catalyze positioning and segregation events. The exact nature of this ParBS complex has remained elusive, what we address here by revisiting the Stochastic Binding model (SBM) introduced to explain the non-specific binding profile of ParB in the vicinity of parS. In the SBM, DNA loops stochastically bring loci inside a sharp cluster of ParB. However, previous SBM versions did not include the negative supercoiling of bacterial DNA, leading to use unphysically small DNA persistences to explain the ParB binding profiles. In addition, recent super-resolution microscopy experiments have revealed a ParB cluster that is significantly smaller than previous estimations and suggest that it results from a liquid-liquid like phase separation. Here, by simulating the folding of long (≥ 30 kb) supercoiled DNA molecules calibrated with realistic DNA parameters and by considering different possibilities for the physics of the ParB cluster assembly, we show that the SBM can quantitatively explain the ChIP-seq ParB binding profiles without any fitting parameter, aside from the supercoiling density of DNA, which, remarkably, is in accord with independent measurements. We also predict that ParB assembly results from a non-equilibrium, stationary balance between an influx of produced proteins and an outflux of excess proteins, i.e., ParB clusters behave like liquid-like protein condensates with unconventional “leaky” boundaries. In bacteria, faithful genome inheritance requires the two replicated DNA molecules to be segregated at the opposite halves of the cell. ParABS, the most widespread bacterial DNA segregation system, is composed of a centromere sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding protein. Hundreds of ParB assemble dynamically to form clusters around parS, which then serve as substrates for ParA molecules to catalyze the positioning and segregation events. The nature of these clusters and their interaction with DNA have remained elusive. Here, we propose a realistic minimal model that captures quantitatively the peculiar DNA binding profile of ParB in the vicinity of parS in Escherichia coli. From the viewpoint of DNA, the only fitting parameter is the in vivo supercoiling density resulting from the removal of DNA helices by toposiomerases, which is in accord with previous independent estimations. From the viewpoint of ParB clusters, we predict that they behave like liquid-like protein condensates with unconventional boundaries. Namely, we predict boundaries to be leaky (i.e. not sharp) as a result of the non-equilibrium protein production, diffusion and dilution. Altogether, our work provides novel insights into bacterial DNA organization and intracellular liquid-liquid phase separation.
Collapse
Affiliation(s)
- Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- * E-mail: (J-CW); (IJ)
| | | | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- LPHI, Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | | | - Ivan Junier
- CNRS, Univ. Grenoble Alpes, TIMC, Grenoble, France
- * E-mail: (J-CW); (IJ)
| |
Collapse
|
6
|
Nagy-Staron A, Tomasek K, Caruso Carter C, Sonnleitner E, Kavčič B, Paixão T, Guet CC. Local genetic context shapes the function of a gene regulatory network. eLife 2021; 10:e65993. [PMID: 33683203 PMCID: PMC7968929 DOI: 10.7554/elife.65993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.
Collapse
Affiliation(s)
- Anna Nagy-Staron
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Elisabeth Sonnleitner
- Department of MicrobiologyImmunobiology and Genetics, Max F. Perutz Laboratories, Center Of Molecular Biology, University of ViennaViennaAustria
| | - Bor Kavčič
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Tiago Paixão
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
7
|
Joyeux M, Junier I. Requirements for DNA-Bridging Proteins to Act as Topological Barriers of the Bacterial Genome. Biophys J 2020; 119:1215-1225. [PMID: 32822585 PMCID: PMC7420610 DOI: 10.1016/j.bpj.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial genomes have been shown to be partitioned into several-kilobase-long chromosomal domains that are topologically independent from each other, meaning that change of DNA superhelicity in one domain does not propagate to neighbors. Both in vivo and in vitro experiments have been performed to question the nature of the topological barriers at play, leading to several predictions on possible molecular actors. Here, we address the question of topological barriers using polymer models of supercoiled DNA chains that are constrained such as to mimic the action of predicted molecular actors. More specifically, we determine under which conditions DNA-bridging proteins may act as topological barriers. To this end, we developed a coarse-grained bead-and-spring model and investigated its properties through Brownian dynamics simulations. As a result, we find that DNA-bridging proteins must exert rather strong constraints on their binding sites; they must block the diffusion of the excess of twist through the two binding sites on the DNA molecule and, simultaneously, prevent the rotation of one DNA segment relative to the other one. Importantly, not all DNA-bridging proteins satisfy this second condition. For example, single bridges formed by proteins that bind DNA nonspecifically, like H-NS dimers, are expected to fail with this respect. Our findings might also explain, in the case of specific DNA-bridging proteins like LacI, why multiple bridges are required to create stable independent topological domains. Strikingly, when the relative rotation of the DNA segments is not prevented, relaxation results in complex intrication of the two domains. Moreover, although the value of the torsional stress in each domain may vary, their differential is preserved. Our work also predicts that nucleoid-associated proteins known to wrap DNA must form higher protein-DNA complexes to efficiently work as topological barriers.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS, Université Grenoble Alpes, Grenoble, France.
| | - Ivan Junier
- TIMC-IMAG, CNRS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
9
|
Hocher A, Rojec M, Swadling JB, Esin A, Warnecke T. The DNA-binding protein HTa from Thermoplasma acidophilum is an archaeal histone analog. eLife 2019; 8:52542. [PMID: 31710291 PMCID: PMC6877293 DOI: 10.7554/elife.52542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.
Collapse
Affiliation(s)
- Antoine Hocher
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Maria Rojec
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jacob B Swadling
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Alexander Esin
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
10
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
11
|
Stoof R, Wood A, Goñi-Moreno Á. A Model for the Spatiotemporal Design of Gene Regulatory Circuits †. ACS Synth Biol 2019; 8:2007-2016. [PMID: 31429541 DOI: 10.1021/acssynbio.9b00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mathematical modeling assists the design of synthetic regulatory networks by providing a detailed mechanistic understanding of biological systems. Models that can predict the performance of a design are fundamental for synthetic biology since they minimize iterations along the design-build-test lifecycle. Such predictability depends crucially on what assumptions (i.e., biological simplifications) the model considers. Here, we challenge a common assumption when it comes to the modeling of bacterial-based gene regulation: considering negligible the effects of intracellular physical space. It is commonly assumed that molecules, such as transcription factors (TF), are homogeneously distributed inside a cell, so there is no need to model their diffusion. We describe a mathematical model that accounts for molecular diffusion and show how simulations of network performance are decisively affected by the distance between its components. Specifically, the model focuses on the search by a TF for its target promoter. The combination of local searches, via one-dimensional sliding along the chromosome, and global searches, via three-dimensional diffusion through the cytoplasm, determine TF-promoter interplay. Previous experimental results with engineered bacteria in which the distance between TF source and target was minimized or enlarged were successfully reproduced by the spatially resolved model we introduce here. This suggests that the spatial specification of the circuit alone can be exploited as a design parameter in synthetic biology to select programmable output levels.
Collapse
Affiliation(s)
- Ruud Stoof
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Alexander Wood
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Ángel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| |
Collapse
|
12
|
Ross BC, Costello JC. Improved inference of chromosome conformation from images of labeled loci. F1000Res 2019; 7. [PMID: 31363407 PMCID: PMC6644830 DOI: 10.12688/f1000research.16252.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 11/29/2022] Open
Abstract
We previously published a method that infers chromosome conformation from images of fluorescently-tagged genomic loci, for the case when there are many loci labeled with each distinguishable color. Here we build on our previous work and improve the reconstruction algorithm to address previous limitations. We show that these improvements 1) increase the reconstruction accuracy and 2) allow the method to be used on large-scale problems involving several hundred labeled loci. Simulations indicate that full-chromosome reconstructions at 1/2 Mb resolution are possible using existing labeling and imaging technologies. The updated reconstruction code and the script files used for this paper are available at:
https://github.com/heltilda/align3d.
Collapse
Affiliation(s)
- Brian C Ross
- Computational Bioscience Program, Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James C Costello
- Computational Bioscience Program, Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
13
|
Negri M, Gherardi M, Tiana G, Cosentino Lagomarsino M. Spontaneous domain formation in disordered copolymers as a mechanism for chromosome structuring. SOFT MATTER 2018; 14:6128-6136. [PMID: 29998272 DOI: 10.1039/c8sm00468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Motivated by the problem of domain formation in chromosomes, we studied a co-polymer model where only a subset of the monomers feel attractive interactions. These monomers are displaced randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system. Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold into structures characterized by multiple distinct domains of consecutive segments. In each domain, attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-exchange simulations that adding disorder in the position of the interacting monomers further stabilizes these domains. The model suggests that the partitioning of the chain into well-defined domains of consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes, evolution could have acted on the spacing of interacting monomers to modulate in a simple way the underlying domains for functional reasons.
Collapse
Affiliation(s)
- Matteo Negri
- Department of Physics, Universitá degli Studi di Milano, via Celoria 16, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
14
|
Junier I, Frémont P, Rivoire O. Universal and idiosyncratic characteristic lengths in bacterial genomes. Phys Biol 2018; 15:035001. [PMID: 29512518 DOI: 10.1088/1478-3975/aab4ac] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10-20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, TIMC-IMAG, Grenoble, France. Univ. Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | | | | |
Collapse
|
15
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
16
|
Gherardi M, Calabrese L, Tamm M, Cosentino Lagomarsino M. Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport. Phys Rev E 2017; 96:042402. [PMID: 29347533 DOI: 10.1103/physreve.96.042402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Indexed: 06/07/2023]
Abstract
The short-time dynamics of bacterial chromosomal loci is a mixture of subdiffusive and active motion, in the form of rapid relocations with near-ballistic dynamics. While previous work has shown that such rapid motions are ubiquitous, we still have little grasp on their physical nature, and no positive model is available that describes them. Here, we propose a minimal theoretical model for loci movements as a fractional Brownian motion subject to a constant but intermittent driving force, and compare simulations and analytical calculations to data from high-resolution dynamic tracking in E. coli. This analysis yields the characteristic time scales for intermittency. Finally, we discuss the possible shortcomings of this model, and show that an increase in the effective local noise felt by the chromosome associates to the active relocations.
Collapse
Affiliation(s)
- Marco Gherardi
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- Physics Department, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Ludovico Calabrese
- Physics Department, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Mikhail Tamm
- Physics Department, University of Moscow, 119991 Moscow, Russia
- Department of Applied Mathematics, Higher School of Economics, 101000 Moscow, Russia
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
- CNRS, UMR 7238, Paris, France
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
17
|
Gherardi M, Cosentino Lagomarsino M. Procedures for Model-Guided Data Analysis of Chromosomal Loci Dynamics at Short Time Scales. Methods Mol Biol 2017; 1624:291-307. [PMID: 28842891 DOI: 10.1007/978-1-4939-7098-8_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
This chapter provides theoretical background and practical procedures for model-guided analysis of mobility of chromosomal loci from movies of many single trajectories. We guide the reader through existing physical models and measurable quantities, illustrating how this knowledge is useful for the interpretation of the measurements.
Collapse
Affiliation(s)
- Marco Gherardi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 4 Place Jussieu, Paris, France.,FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 4 Place Jussieu, Paris, France. .,FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy. .,CNRS, UMR 7238, Paris, France.
| |
Collapse
|
18
|
Lepage T, Junier I. Modeling Bacterial DNA: Simulation of Self-Avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix. Methods Mol Biol 2017; 1624:323-337. [PMID: 28842893 DOI: 10.1007/978-1-4939-7098-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under supercoiling constraints, naked DNA, such as a large part of bacterial DNA, folds into braided structures called plectonemes. The double-helix can also undergo local structural transitions, leading to the formation of denaturation bubbles and other alternative structures. Various polymer models have been developed to capture these properties, with Monte-Carlo (MC) approaches dedicated to the inference of thermodynamic properties. In this chapter, we explain how to perform such Monte-Carlo simulations, following two objectives. On one hand, we present the self-avoiding supercoiled Worm-Like Chain (ssWLC) model, which is known to capture the folding properties of supercoiled DNA, and provide a detailed explanation of a standard MC simulation method. On the other hand, we explain how to extend this ssWLC model to include structural transitions of the helix.
Collapse
Affiliation(s)
- Thibaut Lepage
- CNRS, TIMC-IMAG, F-38000, Grenoble, France.,University of Grenoble Alpes, TIMC-IMAG, F-38000, Grenoble, France
| | - Ivan Junier
- CNRS, TIMC-IMAG, F-38000, Grenoble, France. .,University of Grenoble Alpes, TIMC-IMAG, F-38000, Grenoble, France.
| |
Collapse
|
19
|
Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology? G3-GENES GENOMES GENETICS 2016; 6:1597-606. [PMID: 27172194 PMCID: PMC4889656 DOI: 10.1534/g3.116.028274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Collapse
|