1
|
Maeyama L, Fas S, Schüttrumpf J, Henrichsen S. Comparative analysis of purity of human albumin preparations for clinical use. Anal Chim Acta 2024; 1332:343364. [PMID: 39580176 DOI: 10.1016/j.aca.2024.343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Albumin is the most prevalent plasma protein and serves numerous physiological roles, both in body fluid management and in various other capacities. In many diseases, a deficiency of albumin has been observed, and in certain conditions, albumin substitution has been demonstrated to improve outcome in comparison to plasma expansion using crystalloid or other colloid solutions. The favourable effects of using albumin in patients with liver cirrhosis are likely associated with the non-oncotic functions of albumin. Albumin for clinical use is obtained through fractionation of pooled donor plasma. The production procedures are optimized to ensure pure, chemically uncompromised and native protein. RESULTS We have extensively analysed commercial preparations of human albumin for clinical use from six different providers. Parameters that must correspond to the requirements of international pharmacopoeias were assessed (aluminium, ethanol, sodium, the presence of dimers and oligomers) and found to conform in all cases. In addition, we used for the first time nuclear magnetic resonance (NMR) as an additional analytical approach for investigating in greater depth the quality of a biological remedy gained from human plasma. We applied both 1H NMR and 13C-HSQC for confirming the identity of the albumin preparations, which also conformed in all cases. Moreover, we utilized T2-filtered 1H NMR and 13C-HSQC measurements to identify the presence of small molecules in the preparations. This demonstrated similar patterns of additional substances present, but also unveiled certain differences in purity in the products of the different providers. SIGNIFICANCE Our analyses confirmed that albumin preparations in clinical use conform to the requirements. We furthermore demonstrate that NMR measurements can provide further depth in identity and purity measurements of biologicals. Despite largely standardized protocols in pharmaceutical albumin production, our in-depth analyses revealed differences in purity. Some samples exhibited lower levels of components other than albumin. We discuss possible causes of these observations and their potential implications for clinical therapy.
Collapse
Affiliation(s)
- Liye Maeyama
- Biotest AG, Landsteinerstraße 5, D-63303, Dreieich, Germany
| | - Stefanie Fas
- Biotest AG, Landsteinerstraße 5, D-63303, Dreieich, Germany
| | | | | |
Collapse
|
2
|
Nirwal S, Saravanan P, Bajpai A, Meshram VD, Raju G, Deeksha W, Prabusankar G, Patel BK. In Vitro Interaction of a C-Terminal Fragment of TDP-43 Protein with Human Serum Albumin Modulates Its Aggregation. J Phys Chem B 2022; 126:9137-9151. [PMID: 36326054 DOI: 10.1021/acs.jpcb.2c04469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An increased level of naturally occurring anti-TDP-43 antibodies was observed in the serum and cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis patients. Human serum albumin (HSA), the most abundant protein in blood plasma and CSF, is found to interact with pathological proteins like Aβ and α-synuclein. Therefore, we examined the effect on the in vitro aggregation of a C-terminal fragment of TDP-43 in the presence of HSA. We found that the lag phase in TDP-432C aggregation is abrogated in the presence of HSA, but there is an overall decreased aggregation as examined by thioflavin-T fluorescence spectroscopy and microscopy. An early onset of TDP-432C oligomer formation in the presence of HSA was observed using atomic force microscopy and transmission electron microscopy. Also, a known chemical inhibitor of TDP-432Caggregation, AIM4, abolishes the HSA-induced early formation of TDP-432C oligomers. Notably, the aggregates of TDP-432C formed in the presence of HSA are more stable against sarkosyl detergent. Using affinity copurification, we observed that HSA can bind to TDP-432C, and biolayer interferometry further supported their physical interaction and suggested the binding affinity to be in sub-micromolar range. Taken together, the data support that HSA can interact with TDP-432C in vitro and affect its aggregation.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
3
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
5
|
Nirwal S, Bharathi V, Patel BK. Amyloid-like aggregation of bovine serum albumin at physiological temperature induced by cross-seeding effect of HEWL amyloid aggregates. Biophys Chem 2021; 278:106678. [PMID: 34492451 DOI: 10.1016/j.bpc.2021.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 01/16/2023]
Abstract
BSA can form amyloid-like aggregates in vitro at 65 °C. Heterologous amyloid can proposedly cross-seed other protein's aggregation, however, general mechanisms and driving conditions remain to be vividly elucidated. Here, we examined if pre-formed HEWL amyloid can cross-seed the aggregation of BSA at physiological temperature, 37 °C, and whether the efficacy depends on the BSA conformation. We find that at pH 3.0, 37 °C where BSA manifests exposure of abundant hydrophobic patches, HEWL amyloid efficiently drives BSA into ThT-positive, sarkosyl-resistant, β-sheet rich amyloid-like aggregates exhibiting fibrils in TEM. On the contrary, HEWL amyloid fails to cross-seed the BSA aggregation at pH 7.0, 37 °C where BSA has largely internalized hydrophobic patches. Strikingly, human lysozyme amyloid could also cross-seed human serum albumin aggregation at pH 3.0, 37 °C. Thus, heterologous amyloid cross-seeding can help overcome the energy-barrier for aggregation of other proteins that, for any reason, may have perturbed and promiscuous structural conformation at physiological temperatures.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
6
|
Al-Shabib NA, Khan JM, Malik A, Rehman MT, Husain FM, AlAjmi MF, Hamdan Ali Alghamdi O, Khan A. Quinoline yellow dye stimulates whey protein fibrillation via electrostatic and hydrophobic interaction: A biophysical study. J Dairy Sci 2021; 104:5141-5151. [PMID: 33685710 DOI: 10.3168/jds.2020-19766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/28/2020] [Indexed: 01/14/2023]
Abstract
Amyloid fibril formation of proteins is associated with a number of neurodegenerative diseases. Several small molecules can accelerate the amyloid fibril formation in vitro and in vivo. However, the molecular mechanism of amyloid fibrillation is still unclear. In this study, we investigated how the food dye quinoline yellow (QY) induces amyloid fibrillation in α-lactalbumin (α-LA), a major whey protein, at pH 2.0. We used several spectroscopy techniques and a microscopy technique to explore how QY provokes amyloid fibrillation in α-LA. From turbidity and Rayleigh light scattering experiments, we found that QY promotes α-LA aggregation in a concentration-dependent manner; the optimal concentration for α-LA aggregation was 0.15 to 10.00 mM. Below 0.1 mM, no aggregation occurred. Quinoline yellow-induced aggregation was a rapid process that escaped the lag phase, but it depended on the concentrations of both α-LA and QY. We also demonstrated that aggregation switched the secondary structure of α-LA from α-helices to cross-β-sheets. We then confirmed the amyloid-like structure of aggregated α-LA by transmission electron microscopy measurements. Molecular docking and simulation confirmed the stability of the α-LA-QY complex due to the formation of 1 hydrogen bond with Lys99 and 2 electrostatic interactions with Arg70 and Lys99, along with hydrophobic interactions with Leu59 and Tyr103. This study will aid in our understanding of how small molecules induce aggregation of proteins inside the stomach (low pH) and affect the digestive process.
Collapse
Affiliation(s)
- Nasser A Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Altaf Khan
- Department of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Wang J, Liu J, Du G, An Y, Zhao C, Zeng B. The Influence of Ca 2+ and Zn 2+ on the Amyloid Fibril Formation by β-Casein. Protein Pept Lett 2021; 27:915-922. [PMID: 32186269 DOI: 10.2174/0929866527666200318143533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The amyloid fibril formation in different tissues or organs is related to amyloidosis. The Ca2+, Zn2+ and heparan sulfate (HS) are important elements and compositions in human body, which play a key role in regulating various physiological activities. Recently, there are increasing evidence suggest that they are closely linked to the amyloid fibril formation. OBJECTIVE The effect of Ca2+ and Zn2+ on the amyloid fibril formation by β-casein was investigated in the absence and presence of HS, which was significantly to explore the relationship between the concentration changes of Ca2+ and Zn2+ and amyloid fibril formation. METHODS In this work, the influence of Ca2+ and Zn2+ on the β-casein fibril formation in the absence and presence of HS was investigated by various methods of Thioflavin T fluorescence assay, transmission electron microscopy and intrinsic fluorescence measure. RESULTS The results demonstrated that Ca2+ and Zn2+ promoted the β-casein fibril formation. The effect of Ca2+ was greater than that of Zn2+. Meanwhile, the both metal ions had stronger effects when β-casein was incubated with HS together. In addition, it was also observed that the microenvironment of β-casein was changed because the intrinsic fluorescence peaks were red-shifted on the influence of Ca2+ and Zn2+. CONCLUSION Ca2+ and Zn2+ were capable of promoting the β-casein fibril formation in the both absence and presence of HS. This work set up the foundation for further researching of the amyloidosis pathogenesis and provided new insight for us to understand relationship between the inflammation and amyloidosis.
Collapse
Affiliation(s)
- Jia Wang
- Pharmacy College, Jilin University, Changchun, China
| | - Jihua Liu
- Pharmacy College, Jilin University, Changchun, China
| | - Guangguang Du
- Pharmacy College, Jilin University, Changchun, China
| | - Yang An
- Pharmacy College, Jilin University, Changchun, China
| | - Chunfang Zhao
- Pharmacy College, Jilin University, Changchun, China
| | - Baohua Zeng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Reversible Dimerization of Human Serum Albumin. Molecules 2020; 26:molecules26010108. [PMID: 33383640 PMCID: PMC7795135 DOI: 10.3390/molecules26010108] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Pulsed Dipolar Spectroscopy (PDS) methods of Electron Paramagnetic Resonance (EPR) were used to detect and characterize reversible non-covalent dimers of Human Serum Albumin (HSA), the most abundant protein in human plasma. The spin labels, MTSL and OX063, were attached to Cys-34 and these chemical modifications of Cys-34 did affect the dimerization of HSA, indicating that other post-translational modifications can modulate dimer formation. At physiologically relevant concentrations, HSA does form weak, non-covalent dimers with a well-defined structure. Dimer formation is readily reversible into monomers. Dimerization is very relevant to the role of HSA in the transport, binding, and other physiological processes.
Collapse
|
9
|
Jiang S, Carroll L, Rasmussen LM, Davies MJ. Oxidation of protein disulfide bonds by singlet oxygen gives rise to glutathionylated proteins. Redox Biol 2020; 38:101822. [PMID: 33338920 PMCID: PMC7750407 DOI: 10.1016/j.redox.2020.101822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Disulfide bonds play a key function in determining the structure of proteins, and are the most strongly conserved compositional feature across proteomes. They are particularly common in extracellular environments, such as the extracellular matrix and plasma, and in proteins that have structural (e.g. matrix) or binding functions (e.g. receptors). Recent data indicate that disulfides vary markedly with regard to their rate of reaction with two-electron oxidants (e.g. HOCl, ONOOH), with some species being rapidly and readily oxidized. These reactions yielding thiosulfinates that can react further with a thiol to give thiolated products (e.g. glutathionylated proteins with glutathione, GSH). Here we show that these ‘oxidant-mediated thiol-disulfide exchange reactions’ also occur during photo-oxidation reactions involving singlet oxygen (1O2). Reaction of protein disulfides with 1O2 (generated by multiple sensitizers in the presence of visible light and O2), yields reactive intermediates, probably zwitterionic peroxyl adducts or thiosulfinates. Subsequent exposure to GSH, at concentrations down to 2 μM, yields thiolated adducts which have been characterized by both immunoblotting and mass spectrometry. The yield of GSH adducts is enhanced in D2O buffers, and requires the presence of the disulfide bond. This glutathionylation can be diminished by non-enzymatic (e.g. tris-(2-carboxyethyl)phosphine) and enzymatic (glutaredoxin) reducing systems. Photo-oxidation of human plasma and subsequent incubation with GSH yields similar glutathionylated products with these formed primarily on serum albumin and immunoglobulin chains, demonstrating potential in vivo relevance. These reactions provide a novel pathway to the formation of glutathionylated proteins, which are widely recognized as key signaling molecules, via photo-oxidation reactions. Disulfide bonds (DSBs) are critical to protein structure and function. DSBs are rapidly oxidized by singlet oxygen and other oxidants to reactive species. These DSB-derived intermediates react with GSH to give glutathionylated proteins. Glutathionylation can be diminished by reductants, but does not repair DSB damage. Oxidation of human plasma DSBs gives glutathionylated albumin and immunoglobulins.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars M Rasmussen
- Center for Individualized Medicine in Arterial Diseases (CIMA), Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
10
|
Mannem R, Yousuf M, Sreerama L. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Front Chem 2020; 8:684. [PMID: 32850681 PMCID: PMC7424059 DOI: 10.3389/fchem.2020.00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Extensive research on amyloid fibril formations shows that certain core sequences within Aβ peptide play an important role in their formation. It is impossible to track these events in vivo. Many proteins and peptides with such core sequences form amyloid fibrils and such Aβ sheet mimics have become excellent tools to study amyloid fibril formation and develop therapeutic strategies. A group of peptides based on amyloid peptide sequences obtained from PDB searches, where glycine residues are substituted with alanine and isoleucine, are tested for aggregation by SEM and ThT binding assay. SEM of different peptide sequences showed morphologically different structures such as nanorods, crystalline needles and nanofibrils. The peptides were co-incubated with HNQ (a quinone) to study its effect on the process of aggregation and/or fibrillation. In conclusion, this group of peptides seem to be Aβ sheet mimics and can be very useful in understanding the different morphologies of amyloid fibrils arising from different peptide sequences and the effective strategies to inhibit or anneal them.
Collapse
Affiliation(s)
- Radhika Mannem
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha, Qatar
| | | |
Collapse
|
11
|
Unravelling the inhibitory and cytoprotective potential of diuretics towards amyloid fibrillation. Int J Biol Macromol 2020; 150:1258-1271. [DOI: 10.1016/j.ijbiomac.2019.10.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
12
|
Girdhar A, Bharathi V, Tiwari VR, Abhishek S, Deeksha W, Mahawar US, Raju G, Singh SK, Prabusankar G, Rajakumara E, Patel BK. Computational insights into mechanism of AIM4-mediated inhibition of aggregation of TDP-43 protein implicated in ALS and evidence for in vitro inhibition of liquid-liquid phase separation (LLPS) of TDP-432C-A315T by AIM4. Int J Biol Macromol 2020; 147:117-130. [DOI: 10.1016/j.ijbiomac.2020.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
|
13
|
Maciążek-Jurczyk M, Janas K, Pożycka J, Szkudlarek A, Rogóż W, Owczarzy A, Kulig K. Human Serum Albumin Aggregation/Fibrillation and its Abilities to Drugs Binding. Molecules 2020; 25:molecules25030618. [PMID: 32023900 PMCID: PMC7038104 DOI: 10.3390/molecules25030618] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Human serum albumin (HSA) is a protein that transports neutral and acid ligands in the organism. Depending on the environment's pH conditions, HSA can take one of the five isomeric forms that change its conformation. HSA can form aggregates resembling those in vitro formed from amyloid at physiological pH (neutral and acidic). Not surprisingly, the main goal of the research was aggregation/fibrillation of HSA, the study of the physicochemical properties of formed amyloid fibrils using thioflavin T (ThT) and the analysis of ligand binding to aggregated/fibrillated albumin in the presence of dansyl-l-glutamine (dGlu), dansyl-l-proline (dPro), phenylbutazone (Phb) and ketoprofen (Ket). Solutions of human serum albumin, both non-modified and modified, were examined with the use of fluorescence, absorption and circular dichroism (CD) spectroscopy. The experiments conducted allowed observation of changes in the structure of incubated HSA (HSAINC) in relation to nonmodified HSA (HSAFR). The formed aggregates/fibrillation differed in structure from HSA monomers and dimers. Based on CD spectroscopy, previously absent βstructural constructs have been registered. Whereas, using fluorescence spectroscopy, the association constants differing for fresh and incubated HSA solutions in the presence of dansyl-amino acids and markers for binding sites were calculated and allowed observation of the conformational changes in HSA molecule.
Collapse
Affiliation(s)
- Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
- Correspondence: ; Tel.: +48-32-364-1582
| | - Kamil Janas
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Aleksandra Owczarzy
- Independent Public Clinical Hospital No. 1 in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| |
Collapse
|
14
|
Giannousi K, Antonoglou O, Dendrinou-Samara C. Interplay between Amyloid Fibrillation Delay and Degradation by Magnetic Zinc-Doped Ferrite Nanoparticles. ACS Chem Neurosci 2019; 10:3796-3804. [PMID: 31298846 DOI: 10.1021/acschemneuro.9b00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyloidosis, the aggregation of naturally soluble proteins into fibrils, is the main pathological hallmark of central nervous system (CNS) disorders, and new therapeutic approaches can be introduced through nanotechnology. Herein, magnetic nanoparticles (MNPs) are proposed to combat amyloidosis and act as CNS theranostic (therapy and diagnosis) candidates through magnetomechanical forces that can be induced under a low-frequency magnetic field. In that vein, a modified one-step microwave-assisted polyol process has been employed to synthesize hybrid organic/inorganic zinc ferrite (ZnxFe3-xO4) MNPs with different levels of zinc doping (0.30 < x < 0.6) derived from the utilized polyol. The lowest doped (x = 0.30) MNPs exhibited high magnetization (127 emu/g), high T2 imaging ability (r2 = 432 mM-1 s-1), and relatively small hydrodynamic size (180 nm), decisive characteristics to further evaluate their CNS theranostic potential. Their effect on the fibrillation/degradation was monitored in two model proteins, insulin and albumin, in the presence/absence of variant external magnetic fields (static, rotating, or alternating) via Thioflavin T (ThT) fluorescence assay and optical fluorescence microscopy. The MNPs were injected either in oligomer solution where significant fibrillation delay was observed, boosted by zinc ionic leaching of MNPs, or in already formed amyloid plaques where up to 86% amyloid degradation was recorded in the presence of magnetic fields, unveiling magnetomechanical antifibrillation properties. The alternating magnetic field (4 Hz) allows the bouncing of the MNPs into the amyloid net driven by the magnetic forces, and thus is featured as the preferred "dancing mode", which strengthens the degrading efficacy of MNPs.
Collapse
Affiliation(s)
- Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| |
Collapse
|
15
|
Khandelwal P, Alam A, Choksi A, Chattopadhyay S, Poddar P. Retention of Anticancer Activity of Curcumin after Conjugation with Fluorescent Gold Quantum Clusters: An in Vitro and in Vivo Xenograft Study. ACS OMEGA 2018; 3:4776-4785. [PMID: 30023902 PMCID: PMC6045371 DOI: 10.1021/acsomega.8b00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles (Au NPs) have been thoroughly investigated for anti-cancer therapy. However, their undesired high gold content remains a problem when injected into the body for drug delivery applications. In this report, we made an effort to conjugate the curcumin molecules on the surface of gold quantum clusters (Au QCs) by a novel in situ synthesis method which provides an alternative route to not only reduce the metallic content but also increase the water solubility of curcumin and the loading efficiency. Here, curcumin itself acts as a reducing and capping agent for the synthesis of Au QCs. The UV-vis absorption, fluorescence, transmission electron microscopy, and electrospray ionization mass spectrometry results confirmed the synthesis of fluorescent Au QCs. Curcumin-conjugated Au NPs (C-Au NPs) and glutathione (GSH)-conjugated Au QCs (GSH-Au QCs) were also synthesized to visualize the effect of particle size and the capping agent, respectively, on the cytotoxicity to normal and cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the curcumin-conjugated Au QCs (C-Au QCs) were less cytotoxic to normal cells while almost the same cytotoxic to cancer cells in comparison to curcumin itself, which indicates that curcumin preserves its anticancer property even after binding to the Au QCs. However, C-Au NPs and GSH-Au QCs did not show any cytotoxicity against the normal and cancer cells at the concentration used. The western blot assay indicated that C-Au QCs promote apoptosis in cancer cells. Further, the in vivo study on severe combined immunodeficiency mice showed that C-Au QCs also inhibited the tumor growth efficiently without showing significant toxicity to internal organs.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Aftab Alam
- National
Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | - Samit Chattopadhyay
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Pankaj Poddar
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| |
Collapse
|
16
|
Prasad A, Sivalingam V, Bharathi V, Girdhar A, Patel BK. The amyloidogenicity of a C-terminal region of TDP-43 implicated in Amyotrophic Lateral Sclerosis can be affected by anions, acetylation and homodimerization. Biochimie 2018; 150:76-87. [PMID: 29751083 DOI: 10.1016/j.biochi.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease associated with accumulation of hyper-phosphorylated, and ubiquitinated TAR DNA-binding protein-43 (TDP-43) as inclusion deposits in neuronal cells. Recently, amyloid-like fibrillar aggregates of TDP-43 have been reported from several ALS patients. The C-terminal region of TDP-43 is central to TDP-43's pathological aggregation and most of the familial ALS mutations in the encoding TARDBP gene are located in this domain. Also, aberrant proteolytic cleavages of TDP-43 produce cytotoxic C-terminal fragments of ∼15-35 kDa. The C-terminal end harbours a glycine-rich region and a Q/N rich prion-like aggregation-prone domain which has been shown to form amyloid-like fibrillar aggregates in vitro. Previously, TDP-43 protein has also been shown to undergo several other post-translational modifications such as acetylation and dimerization, however, their effects on TDP-43's amyloid-like in vitro aggregation have not been examined. Towards this, we have here examined effects of anions, acetylation and homodimerization on the in vitro aggregation of a C-terminal fragment (amino acid: 193-414) of TDP-43 termed TDP-432C. We find that kosmotropic anions greatly accelerate whereas chaotropic anions impede its aggregation. Also, we show that acetylation of certain lysines in C-terminal fragments significantly reduces the TDP-432C's amyloid-like aggregation. Furthermore, we separated spontaneously formed cysteine-linked homodimers of the recombinantly purified TDP-432C using size-exclusion chromatography and found that these dimers retain amyloidogenicity. These findings would be of significance to the TDP-43 aggregation-induced pathology in ALS.
Collapse
Affiliation(s)
- Archana Prasad
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Vishwanath Sivalingam
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Amandeep Girdhar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
17
|
Naldi M, Baldassarre M, Domenicali M, Bartolini M, Caraceni P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J Pharm Biomed Anal 2017; 144:138-153. [PMID: 28465079 DOI: 10.1016/j.jpba.2017.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
Human serum albumin (HSA) is the most abundant circulating plasma protein. Besides a significant contribution to the osmotic pressure, it is also involved in the fine regulation of many other physiological processes, including the balance of the redox state, the inflammatory and/or immunological responses, and the pharmacokinetic and pharmacodynamics of many drugs. Growing evidence suggests that HSA undergoes structural and functional damage in diseases characterized by an enhanced systemic inflammatory response and oxidative stress, as it occurs in chronic liver disease. Based on their clinical relevance, this review provides a summary of the most common post-translational modifications affecting HSA structural integrity and functions and their clinical relevance in the field of liver disease. The review also provides a critical description of the analytical approaches employed for the investigation of conformational alterations and the identification/quantitation of specific post-translational modifications affecting HSA. Finally, the analytical methods available for the assessment of two of the most clinically relevant non-oncotic properties of HSA, namely the binding capacity and the antioxidant activity, are critically reviewed. Among the available techniques particular attention is given to those proposed for the in vitro and in vivo investigation of structurally modified albumin.
Collapse
Affiliation(s)
- Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy; Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Marco Domenicali
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Italy
| | - Paolo Caraceni
- Center for Applied Biomedical Research (C.R.B.A.), S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Italy.
| |
Collapse
|
18
|
Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants. Biophys Chem 2016; 219:28-37. [DOI: 10.1016/j.bpc.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022]
|
19
|
Sivalingam V, Patel BK. Familial mutations in fibrinogen Aα (FGA) chain identified in renal amyloidosis increase in vitro amyloidogenicity of FGA fragment. Biochimie 2016; 127:44-9. [DOI: 10.1016/j.biochi.2016.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
|