1
|
Ge A, Chan C, Yang X. Exploring the Dark Matter of Human Proteome: The Emerging Role of Non-Canonical Open Reading Frame (ncORF) in Cancer Diagnosis, Biology, and Therapy. Cancers (Basel) 2024; 16:2660. [PMID: 39123386 PMCID: PMC11311765 DOI: 10.3390/cancers16152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (C.C.)
| |
Collapse
|
2
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
3
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Steroid receptor RNA activator gene footprint in the progression and drug resistance of colorectal cancer through oxidative phosphorylation pathway. Life Sci 2021; 285:119950. [PMID: 34520769 DOI: 10.1016/j.lfs.2021.119950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The steroid receptor RNA activator 1 (SRA1) gene is involved in the progression of various cancers via different molecular mechanisms mediated by long non-coding RNA SRA (lncRNA SRA). This study aimed to evaluate the lncRNA SRA effect on the tumor progression of colorectal cancer (CRC). METHODS SRA1 expression was assessed in the cancer genome atlas datasets, CRC cell lines, and tumor specimens. Meta-analysis and gene co-expression network analysis were performed to identify pathways related to SRA1. RNA interference and cell treatment were utilized to examine the role of SRA1 expression in HT-29 and Caco-2 cell lines. Also, the effect of SRA1 expression was investigated on drug resistance, clinical parameters, and mutations in CRC samples. RESULTS The SRA1 transcripts, especially lncRNA SRA, were dysregulated in CRC tissue samples compared with normal tissue samples. Furthermore, SRA1 depletion decreased colony formation and proliferation while induced apoptosis in HT-29 and Caco-2 cells. In silico analyses indicated that SRA1 level was correlated with expression levels of oxidative phosphorylation (OXPHOS) genes. LncRNA SRA expression increased in response to the increased oxidative capacity, and when lncRNA SRA was knocked down, the expression level of OXPHOS pathway genes, including NDUFB5 and ATP5F1B, was changed. Also, KRAS-mutant samples had the highest SRA1 expression level. CONCLUSIONS LncRNA SRA could function as an oncogene through the OXPHOS pathway in CRC, and serve as a potential biomarker for identifying CRC subtype with KRAS mutations. The findings suggest that lncRNA SRA might be a therapeutic target to inhibit cell proliferation in CRC.
Collapse
|
5
|
Lei S, Zhang B, Huang L, Zheng Z, Xie S, Shen L, Breitzig M, Czachor A, Liu H, Luo H, Chen Y, Liu K, Sun H, Zheng Q, Li Q, Wang F. SRSF1 promotes the inclusion of exon 3 of SRA1 and the invasion of hepatocellular carcinoma cells by interacting with exon 3 of SRA1pre-mRNA. Cell Death Discov 2021; 7:117. [PMID: 34011971 PMCID: PMC8134443 DOI: 10.1038/s41420-021-00498-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Steroid receptor RNA activator 1 (SRA1) has been described as a novel transcriptional co-activator that affects the migration of cancer cells. Through RT-PCR, we identified that skipping exon 3 of SRA1 produces two isoforms, including the truncated short isoform, SRA1-S, and the long isoform, SRA1-L. However, the effect of these two isomers on the migration of HCC cells, as well as the specific mechanism of exon 3 skipping remain unclear. In this study, we found up regulated expression of SRSF1 and SRA1-L in highly metastatic HCCLM3, as well as in HCCs with SRSF1 demonstrating the strongest correlation with SRA1-L. In contrast, we observed a constitutively low expression of SRA1-S and SRSF1 in lowly metastatic HepG2 cells. Overexpression of SRSF1 or SRA1-L promoted migration and invasion by increasing the expression of CD44, while SRA1-S reversed the effect of SRSF1 and SRA1-L in vitro. In addition, lung metastasis in mice revealed that, knockdown of SRSF1 or SRA1-L inhibited the migration of HCC cells, while SRA1-L overexpression abolished the effect of SRSF1 knockout and instead promoted HCC cells migration in vivo. More importantly, RNA immunoprecipitation and Cross-link immunoprecipitation analyses showed that SRSF1 interacts with exon 3 of SRA1 to up regulate the expression of SRA1-L in HCC cells. RNA pull-down results indicated that SRSF1 could also bind to exon 3 of SRA1 in vitro. Finally, minigene -MS2 mutation experiments showed that mutation of the SRA1 exon 3 binding site for SRSF1 prevented the binding of SRA1 pre-mRNA. In summary, our results provide experimental evidence that SRA1 exon 3 inclusion is up regulated by SRSF1 to promote tumor invasion and metastasis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sijia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Bin Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Luyuan Huang
- University of Chinese Academy of Science, Beijing, China
| | - Ziyou Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Shaohan Xie
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianghua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Mason Breitzig
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Brown School of Social Work, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexander Czachor
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hongtao Liu
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huiru Luo
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanxia Chen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Kangshou Liu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
6
|
Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod Sci 2021; 29:1086-1101. [PMID: 33844188 DOI: 10.1007/s43032-021-00571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Uterine leiomyoma (UL), as the most prevalent type of women's health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.
Collapse
Affiliation(s)
- Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoud Mohseni-Dargah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St., Velenjak Ave, Chamran Highway, Tehran, Iran.
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhu K, Gong Z, Li P, Jiang X, Zeng Z, Xiong W, Yu J. A review of linc00673 as a novel lncRNA for tumor regulation. Int J Med Sci 2021; 18:398-405. [PMID: 33390809 PMCID: PMC7757132 DOI: 10.7150/ijms.48134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) act as regulators and play important roles in a variety of biological processes. These regulators constitute a huge information network among genes and participate in the pathophysiological process of human diseases. Increasing evidence has demonstrated that LncRNA, as an oncogene or tumor suppressor gene, is closely related to the occurrence and development of tumors. Linc00673 is a recently discovered LncRNA molecule that is dysregulated in several solid tumors. Moreover, its genetic polymorphism is believed to affect the susceptibility of a population to the corresponding cancer species. This article summarizes the role of Linc00673 in different human cancers and its molecular mechanisms with a focus on the characteristics of Linc00673 and the existing literature on it while highlighting the future research directions for Linc00673. Linc00673 has the potential to become a feasible clinical diagnostic and prognostic marker toward providing a new molecular therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Hong CH, Ho JC, Lee CH. Steroid Receptor RNA Activator, a Long Noncoding RNA, Activates p38, Facilitates Epithelial-Mesenchymal Transformation, and Mediates Experimental Melanoma Metastasis. J Invest Dermatol 2020; 140:1355-1363.e1. [DOI: 10.1016/j.jid.2019.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023]
|
9
|
Guo W, Jiang H, Li H, Li F, Yu Q, Liu Y, Jiang W, Zhang M. LncRNA-SRA1 Suppresses Osteosarcoma Cell Proliferation While Promoting Cell Apoptosis. Technol Cancer Res Treat 2019; 18:1533033819841438. [PMID: 31106680 PMCID: PMC6535715 DOI: 10.1177/1533033819841438] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: Osteosarcoma is a common malignant bone tumor that is frequently found in the long bones of children and adolescents. The aim of this study is to examine long noncoding RNA-steroid receptor RNA activator 1 expression in osteosarcoma to explore the biological function of long noncoding RNA steroid receptor RNA activator 1 on proliferation, migration, and invasion along with apoptosis and its regulatory mechanism, which would facilitate the early diagnosis and targeted therapy of osteosarcoma. Methods: First, microarray analysis was applied to determine the expression of long noncoding RNAs in osteosarcoma tissues and paired normal tissues. Then, quantitative real-time polymerase chain reaction was utilized to validate microarray findings. Next, osteosarcoma cancerous cell lines SJSA-1 and U2OS were transfected with pcDNA3.1-SRA1 or pCMV-sh-SRA1 to increase or decrease steroid receptor RNA activator 1 expression levels, and microRNA-208a inhibitors, mimic to investigate the effects of microRNA-208a on osteosarcoma as well as the regulatory relation between long noncoding RNA steroid receptor RNA activator 1 and microRNA-208a. Cell proliferation was evaluated through Cell Counting Kit-8 and colony formation assays. Flow cytometry analysis was conducted to evaluate the apoptosis ratio. The migration and invasion abilities were measured using wound-healing and transwell assays. Results: Long noncoding RNA-steroid receptor RNA activator 1 expression was downregulated in osteosarcoma tissues and cells compared with that in corresponding normal tissues, whereas microRNA-208a expression was upregulated in osteosarcoma tissues. Moreover, the restoration of long noncoding RNA steroid receptor RNA activator 1 inhibited cell proliferation, and upregulation of long noncoding RNA steroid receptor RNA activator 1 restrained cell migration and invasion but boosted the apoptosis rate in osteosarcoma cells. In addition, long noncoding RNA steroid receptor RNA activator 1 targeting microRNA-208a was involved in the progression of osteosarcoma. Furthermore, upregulating microRNA-208a exerted similar roles of silencing long noncoding RNA steroid receptor RNA activator 1 in cell apoptosis, proliferation, migration, and invasion, which were reversed by enhancing the expression of long noncoding RNA steroid receptor RNA activator 1. Conclusions: In our study, long noncoding RNA steroid receptor RNA activator 1 played an antitumor role in osteosarcoma as it reduced cell migration, invasion, and proliferation, but facilitated cell apoptosis via sponging microRNA-208a, which could be regarded as a potential therapeutic target of osteosarcoma treatment.
Collapse
Affiliation(s)
- Wen Guo
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China.,These authors have contributed equally to this work
| | - Haitao Jiang
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China.,These authors have contributed equally to this work
| | - Haijun Li
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Fang Li
- 2 Department of Neurology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, China
| | - Qing Yu
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yu Liu
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Weiwei Jiang
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Ming Zhang
- 1 Department of Orthopedics, Taizhou People's Hospital, Taizhou, Jiangsu, China
| |
Collapse
|
10
|
Akbari M, Yassaee F, Aminbeidokhti M, Abedin-Do A, Mirfakhraie R. LncRNA SRA1 may play a role in the uterine leiomyoma tumor growth regarding the MED12 mutation pattern. Int J Womens Health 2019; 11:495-500. [PMID: 31507331 PMCID: PMC6718952 DOI: 10.2147/ijwh.s211632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/01/2019] [Indexed: 11/23/2022] Open
Abstract
Background Uterine leiomyomas (ULMs) are benign uterine tumors that are estrogen-dependent. Recent studies suggest that the abnormal expression of the steroid receptor RNA activator 1 (SRA1) long non-coding RNA (lncRNA) might participate in the mechanisms of tumorigenesis of some hormone-dependent tumors including breast cancer. SRA1 is known to enhance the transcriptional activity of steroid receptors and also promotes steroidogenesis. The level of steroid hormones, such as estrogen and the progesterone, and their receptors play an important role in the development and growth of leiomyoma. The aim of the present study was to determine the expression level of lncRNA SRA1 in ULM tissues considering the MED12 mutation pattern. Methods Mutation screening was performed for MED12 exons 1 and 2 and the intronic flanking regions using Sanger sequencing in 60 ULM tissues. Quantitative real-time polymerase chain reaction (qRT-PCRs) was performed in order to estimate the expression of lncRNA SRA1 in leiomyoma samples with and without MED12 gene mutations. The expression results were analyzed by using LinReg and REST software. Results Mutations were detected in exon 2 of the MED12 in 28 (46.67%) ULM samples; including, 21 (75%) missense mutations and 7 (25%) in-frame deletions. No mutation was detected in the MED12 exon 1. LncRNA SRA1 was over-expressed in ULM samples without MED12 mutation compared with ULM samples harboring MED12 mutation (Expression ratio=2.5, P-value=0.004). Conclusion Present results suggest that lncRNA SRA1 may explain the phenotypic difference observed in the tumor size of ULM samples considering MED12 mutation pattern. Therefore, it serves as a good therapeutic target and provides new insight into understanding the disease molecular mechanism.
Collapse
Affiliation(s)
- Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhrolmolouk Yassaee
- Department of Obstetrics and Gynecology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Aminbeidokhti
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Abedin-Do
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,GREB, Dental Faculty, Department of Regenerative Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular Genetics, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Mechanisms of Action. Front Med (Lausanne) 2018; 5:244. [PMID: 30238005 PMCID: PMC6135885 DOI: 10.3389/fmed.2018.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are emerging as new genetic/epigenetic regulators that can impact almost all physiological functions. Here, we focus on the long non-coding steroid receptor RNA activator (SRA), including new insights into its effects on gene expression, the cell cycle, and differentiation; how these relate to physiology and disease; and the mechanisms underlying these effects. We discuss how SRA acts as an RNA coactivator in nuclear receptor signaling; its effects on steroidogenesis, adipogenesis, and myocyte differentiation; the impact on breast and prostate cancer tumorigenesis; and, finally, its ability to modulate hepatic steatosis through several signaling pathways. Genome-wide analysis reveals that SRA regulates hundreds of target genes in adipocytes and breast cancer cells and binds to thousands of genomic sites in human pluripotent stem cells. Recent studies indicate that SRA acts as a molecular scaffold and forms networks with numerous coregulators and chromatin-modifying regulators in both activating and repressive complexes. We discuss how modifications to SRA's unique stem-loop secondary structure are important for SRA function, and highlight the various SRA isoforms and mutations that have clinical implications. Finally, we discuss the future directions for better understanding the molecular mechanisms of SRA action and how this might lead to new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center Ann Arbor, MI, United States
| |
Collapse
|
12
|
Steroid receptor RNA activator: Biologic function and role in disease. Clin Chim Acta 2016; 459:137-146. [DOI: 10.1016/j.cca.2016.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/05/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
|
13
|
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 2016; 73:2491-509. [PMID: 27007508 PMCID: PMC4894931 DOI: 10.1007/s00018-016-2174-5] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 11/25/2022]
Abstract
Since decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability. Recent findings implicate lncRNAs as key players of cellular differentiation, cell lineage choice, organogenesis and tissue homeostasis. Moreover, lncRNAs are involved in pathological conditions such as cancer and cardiovascular disease, and therefore provide novel biomarkers and pharmaceutical targets. Here we discuss examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease.
Collapse
Affiliation(s)
- Sandra U Schmitz
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany.
- Institute for Medical Genetics, Campus Benjamin Franklin, Charite-University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|