1
|
Bettelheim KA, Goldwater PN. Escherichia coli and Sudden Infant Death Syndrome. Front Immunol 2015; 6:343. [PMID: 26191064 PMCID: PMC4490240 DOI: 10.3389/fimmu.2015.00343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/19/2015] [Indexed: 01/02/2023] Open
Abstract
This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted.
Collapse
Affiliation(s)
- Karl A Bettelheim
- Discipline of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide , North Adelaide, SA , Australia
| | - Paul N Goldwater
- Discipline of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide , North Adelaide, SA , Australia
| |
Collapse
|
2
|
Blackwell C, Moscovis S, Hall S, Burns C, Scott RJ. Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection. Front Immunol 2015; 6:44. [PMID: 25798137 PMCID: PMC4350416 DOI: 10.3389/fimmu.2015.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
The risk factors for sudden infant death syndrome (SIDS) parallel those associated with susceptibility to or severity of infectious diseases. There is no evidence that a single infectious agent is associated with SIDS; the common thread appears to be induction of inflammatory responses to infections. In this review, interactions between genetic and environmental risk factors for SIDS are assessed in relation to the hypothesis that many infant deaths result from dysregulation of inflammatory responses to "minor" infections. Risk factors are assessed in relation to three important stages of infection: (1) bacterial colonization (frequency or density); (2) induction of temperature-dependent toxins; (3) induction or control of inflammatory responses. In this article, we review the interactions among risk factors for SIDS for their effects on induction or control of inflammatory responses. The risk factors studied are genetic factors (sex, cytokine gene polymorphisms among ethnic groups at high or low risk of SIDS); developmental stage (changes in cortisol and testosterone levels associated with 2- to 4-month age range); environmental factors (virus infection, exposure to cigarette smoke). These interactions help to explain differences in the incidences of SIDS observed between ethnic groups prior to public health campaigns to reduce these infant deaths.
Collapse
Affiliation(s)
- Caroline Blackwell
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sophia Moscovis
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sharron Hall
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Immunology, John Hunter Hospital, New Lambton, NSW, Australia
| | - Christine Burns
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Immunology, John Hunter Hospital, New Lambton, NSW, Australia
| | - Rodney J. Scott
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Genetics, John Hunter Hospital, New Lambton, NSW, Australia
| |
Collapse
|
3
|
Kerkhof M, Daley D, Postma DS, Park JE, Chan Yeung M, Wijga AH, Gehring U, de Jongste JC, Smit HA, Brunekreef B, van Schayck OC, Becker A, Koppelman GH. Opposite effects of allergy prevention depending on CD14 rs2569190 genotype in 3 intervention studies. J Allergy Clin Immunol 2012; 129:256-9. [DOI: 10.1016/j.jaci.2011.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/21/2011] [Accepted: 08/12/2011] [Indexed: 11/30/2022]
|
4
|
Jenkins R, Sherburn R. Used cot mattresses as potential reservoirs of bacterial infection: nutrient availability within polyurethane foam. J Appl Microbiol 2007; 104:526-33. [DOI: 10.1111/j.1365-2672.2007.03609.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jenkins RO, Sherburn RE. Growth and survival of bacteria implicated in sudden infant death syndrome on cot mattress materials. J Appl Microbiol 2005; 99:573-9. [PMID: 16108799 DOI: 10.1111/j.1365-2672.2005.02620.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To compare growth and survival of selected bacteria implicated in sudden infant death syndrome (SIDS) on cot mattress polyurethane (PU) inner-foams and on different types of cot mattress cover materials. METHODS AND RESULTS Escherichia coli, Staphylococcus aureus or Streptococcus pyogenes were inoculated onto swatches of new-unused cot mattress PU inner-foam and onto three types of cot mattress covers (polyvinyl chloride, cotton and polyester). The influence of inoculation cell density, relative humidity (RH) and temperature of incubation on survival was assessed by recovery of cells in 0.85% NaCl, with viable cell enumeration by plate counting on selective and differential media. Utilization of carbon and nitrogen sources within cot mattress PU was assessed by following growth on aqueous leachate from PU, and by colorimetric determination of aromatic amines. Good survival capability (>206 d) was shown by all three test species on PU inner-foam and on polyester mattress cover at high RH (75%), but only by Staph. aureus on PU at low RH (25%). Aqueous soluble material from PU foam supports bacterial growth; removal of aromatic amines from aqueous leachate from PU accompanies growth of Staph. aureus. CONCLUSIONS Staphylococcus aureus has good survival capability on cot mattress PU foam, even at low RH. Soluble material within PU can serve as carbon and nitrogen sources for bacterial growth. SIGNIFICANCE AND IMPACT OF THE STUDY Prolonged survival of Staph. aureus on PU at low RH could explain, in the context of the common bacterial toxins hypothesis, an increased risk of SIDS associated with used infant mattresses.
Collapse
Affiliation(s)
- R O Jenkins
- School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | | |
Collapse
|
6
|
Sherburn RE, Jenkins RO. Aerial release of bacteria from cot mattress materials and the sudden infant death syndrome. J Appl Microbiol 2005; 98:293-8. [PMID: 15659183 DOI: 10.1111/j.1365-2672.2004.02456.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate aerial release of bacteria from used cot mattresses and to assess factors that may influence this process. METHODS AND RESULTS Movement on used mattresses, simulating that of an infant's head, significantly enhanced aerial release of naturally acquired bacteria from the polyurethane foams (total count data, P = 0.008; Staphylococcus aureus, P = 0.004) or from polyvinyl chloride covers (total count data, P = 0.001). Aerial release of naturally acquired bacteria from used cot mattresses showed high variability and was poorly correlated (R2 < or = 0.294) with bacterial cell density within the materials. In experiments involving inoculation of S. aureus and Escherichia coli onto the polyurethane of unused cot mattresses, aerial release of the species correlated well (R2 > or = 0.950) with inoculation density when simulated infant head movement was applied. Aerial release of these bacterial species from the material decreased with increase in width or aqueous content of the material, and was lower from polyurethane foam of a used cot mattress. CONCLUSIONS Simulated infant movement and mattress related factors influence aerial release of bacteria from cot mattress materials. With simulated infant movement on cot mattress polyurethane foam, levels of airborne bacteria above the material are proportional to bacterial population levels inoculated onto the material. SIGNIFICANCE AND IMPACT OF THE STUDY Cot mattresses harbouring relatively high levels of naturally acquired toxigenic bacteria, such as S. aureus, could pose a relatively high risk of infection to the infant's respiratory tract through increased aerial contamination. This has impact in the context of recent findings on cot mattress related risk factors for sudden infant death syndrome.
Collapse
Affiliation(s)
- R E Sherburn
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | |
Collapse
|
7
|
Goldwater PN. SIDS pathogenesis: pathological findings indicate infection and inflammatory responses are involved. ACTA ACUST UNITED AC 2004; 42:11-20. [PMID: 15325393 DOI: 10.1016/j.femsim.2004.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
This article explores the pathological evidence that supports the hypothesis that infection and inflammation are underlying mechanisms in SIDS. It reviews the pathological findings in relation to the risk factors reported for SIDS and compares these findings with other hypotheses suggested as causes of these unexplained deaths in infants. The roles of environmental factors and bacterial products such as soluble curlin detectable in SIDS sera in triggering cytokine cascades and aberrant inflammatory responses resulting in a toxic shock-like event are also explored. Areas for future research are outlined.
Collapse
Affiliation(s)
- Paul N Goldwater
- Department of Microbiology and Infectious Diseases, The Womens and Children's Hospital, North Adelaide 5006, Australia.
| |
Collapse
|