1
|
Yadav R, Leviatan Ben-Arye S, Subramani B, Padler-Karavani V, Kikkeri R. Screening of Neu5Acα(2-6)gal isomer preferences of siglecs with a sialic acid microarray. Org Biomol Chem 2016; 14:10812-10815. [PMID: 27714250 DOI: 10.1039/c6ob01688j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sialic acids (Sias) are important terminal sugars on cell surfaces involved in a wide range of protein-carbohydrate interactions. Hence, agents modulating sias-mediated protein interactions are promising inhibitors or vaccine candidates. Here, we report the synthesis of Neu5Acα(2-6)Gal structural analogs and their binding to a series of siglecs. The results showed distinct binding patterns with conserved siglecs (hCD22 and mCD22) compared to rapid evolving siglecs (Siglecs -3 & -10).
Collapse
Affiliation(s)
- Rohan Yadav
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India.
| | | | | | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, Tel-Aviv, 69978 Israel.
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India.
| |
Collapse
|
2
|
Hahm HS, Liang CF, Lai CH, Fair RJ, Schuhmacher F, Seeberger PH. Automated Glycan Assembly of Complex Oligosaccharides Related to Blood Group Determinants. J Org Chem 2016; 81:5866-77. [DOI: 10.1021/acs.joc.6b00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heung Sik Hahm
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Chien-Fu Liang
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Chian-Hui Lai
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Richard J. Fair
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Frank Schuhmacher
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular
Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg
1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Fair RJ, Hahm HS, Seeberger PH. Combination of automated solid-phase and enzymatic oligosaccharide synthesis provides access to α(2,3)-sialylated glycans. Chem Commun (Camb) 2015; 51:6183-5. [PMID: 25754251 DOI: 10.1039/c5cc01368b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A synthetic strategy combining automated solid-phase chemical synthesis and enzymatic sialylation was developed to access α(2,3)-sialylated glycans.
Collapse
Affiliation(s)
- Richard J Fair
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
4
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
5
|
Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C, VanderVelde D, Webster P. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis 2014; 72:143-60. [PMID: 24942343 DOI: 10.1111/2049-632x.12195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/07/2014] [Accepted: 06/11/2014] [Indexed: 11/28/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.
Collapse
Affiliation(s)
- Siva Wu
- Bioenergy/GTL & Structural Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Structural Sampling of Glycan Interaction Profiles Reveals Mucosal Receptors for Fimbrial Adhesins of Enterotoxigenic Escherichia coli. BIOLOGY 2013; 2:894-917. [PMID: 24833052 PMCID: PMC3960879 DOI: 10.3390/biology2030894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/03/2022]
Abstract
Fimbriae are long, proteinaceous adhesion organelles expressed on the bacterial envelope, evolutionarily adapted by Escherichia coli strains for the colonization of epithelial linings. Using glycan arrays of the Consortium for Functional Glycomics (CFG), the lectin domains were screened of the fimbrial adhesins F17G and FedF from enterotoxigenic E. coli (ETEC) and of the FimH adhesin from uropathogenic E. coli. This has led to the discovery of a more specific receptor for F17G, GlcNAcβ1,3Gal. No significant differences emerged from the glycan binding profiles of the F17G lectin domains from five different E. coli strains. However, strain-dependent amino acid variations, predominantly towards the positively charged arginine, were indicated by sulfate binding in FedF and F17G crystal structures. For FedF, no significant binders could be observed on the CFG glycan array. Hence, a shotgun array was generated from microvilli scrapings of the distal jejunum of a 3-week old piglet about to be weaned. On this array, the blood group A type 1 hexasaccharide emerged as a receptor for the FedF lectin domain and remarkably also for F18-fimbriated E. coli. F17G was found to selectively recognize glycan species with a terminal GlcNAc, typifying intestinal mucins. In conclusion, F17G and FedF recognize long glycan sequences that could only be identified using the shotgun approach. Interestingly, ETEC strains display a large capacity to adapt their fimbrial adhesins to ecological niches via charge-driven interactions, congruent with binding to thick mucosal surfaces displaying an acidic gradient along the intestinal tract.
Collapse
|
7
|
Berenson CS, Nawar HF, Kruzel RL, Mandell LM, Connell TD. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide. Glycobiology 2012; 23:23-31. [PMID: 22917572 DOI: 10.1093/glycob/cws123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc-host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions.
Collapse
Affiliation(s)
- Charles S Berenson
- Division of Infectious Disease (151), Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| | | | | | | | | |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
9
|
Berenson CS, Nawar HF, Yohe HC, Castle SA, Ashline DJ, Reinhold VN, Hajishengallis G, Connell TD. Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology 2009; 20:41-54. [PMID: 19749203 DOI: 10.1093/glycob/cwp141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LT-IIb, a type II heat-labile enterotoxin of Escherichia coli, is a potent immunologic adjuvant with high affinity binding for ganglioside GD1a. Earlier study suggested that LT-IIb bound preferentially to the terminal sugar sequence NeuAcalpha2-3Galbeta1-3GalNAc. However, studies in our laboratory suggested a less restrictive binding epitope. LT-IIb(T13I), an LT-IIb variant, engineered by a single isoleucine-threonine substitution, retains biological activity, but with less robust inflammatory effects. We theorized that LT-IIb has a less restrictive binding epitope than previously proposed and that immunologic differences between LT-IIb and LT-IIb (T13I) correlate with subtle ganglioside binding differences. Ganglioside binding epitopes, determined by affinity overlay immunoblotting and enzymatic degradation of ganglioside components of RAW264.7 macrophages, indicated that LT-IIb bound to a broader array of gangliosides than previously recognized. Each possessed NeuAcalpha2-3Galbeta1-3GalNAc, although not necessarily as a terminal sequence. Rather, each had a requisite terminal or penultimate single sialic acid and binding was independent of ceramide composition. RAW264.7 enterotoxin-binding and non-binding ganglioside epitopes were definitively identified as GD1a and GM1a, respectively, by enzymatic degradation and mass spectroscopy. Affinity overlay immunoblots, constructed to the diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIb bound NeuAc- and NeuGc-gangliosides with nearly equal affinity. However, LT-IIb(T13I) exhibited enhanced affinity for NeuGc-gangliosides and more restrictive binding. These studies further elucidate the binding epitope for LT-IIb and suggest that the diminished inflammatory activity of LT-IIb(T13I) is mediated by a subtle shift in ganglioside binding. These studies underscore the high degree of specificity required for ganglioside-protein interactions.
Collapse
Affiliation(s)
- Charles S Berenson
- Infectious Disease Division, Department of Veterans Affairs Western New York Healthcare System, State University of New York at Buffalo School of Medicine, Buffalo, NY 14215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Streptococcus mitis phage-encoded adhesins mediate attachment to {alpha}2-8-linked sialic acid residues on platelet membrane gangliosides. Infect Immun 2009; 77:3485-90. [PMID: 19506011 DOI: 10.1128/iai.01573-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The direct binding of bacteria to human platelets contributes to the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis strain SF100 is mediated in part by two bacteriophage-encoded proteins, PblA and PblB. However, the platelet membrane receptor for these adhesins has been unknown. In this study, we demonstrate that these proteins mediate attachment of bacterial cells to sialylated gangliosides on the platelet cell surface. Desialylation of human platelet monolayers reduced adherence of SF100, whereas treatment of the platelets with N- or O-glycanases did not affect platelet binding. Treatment of platelets with sialidases having different linkage specificities showed that removal of alpha2-8-linked sialic acids resulted in a marked reduction in bacterial binding. Preincubation of SF100 with ganglioside GD3, a glycolipid containing alpha2-8-linked sialic acids that is present on platelet membranes, blocked subsequent binding of this strain to these cells. In contrast, GD3 had no effect on the residual binding of platelets by strain PS344, an isogenic DeltapblA DeltapblB mutant. Preincubating platelets with specific monoclonal antibodies to ganglioside GD3 also inhibited binding of SF100 to platelets, but again, they had no effect on binding by PS344. When the direct binding of S. mitis strains SF100 and PS344 to immobilized gangliosides was tested, binding of PS344 to GD3 was reduced by 70% compared to the parent strain. These results indicated that platelet binding by SF100 is mediated by the interaction of PblA and PblB with alpha2-8-linked sialic acids on ganglioside GD3.
Collapse
|
11
|
Prien JM, Huysentruyt LC, Ashline DJ, Lapadula AJ, Seyfried TN, Reinhold VN. Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumor cells using sequential mass spectrometry. Glycobiology 2008; 18:353-66. [PMID: 18256178 DOI: 10.1093/glycob/cwn010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In an effort to understand the role of molecular glycosylation in cancer a murine model has been used to characterize and fingerprint malignancies in established cell lines that manifest all the hallmarks of metastatic disease: spontaneous development, local invasion, intravasation, immune system survival, extravasation, and secondary tumor formation involving liver, kidney, spleen, lung, and brain. Using astrocyte cell controls, we compared N-linked glycosylation from a nonmetastatic brain tumor cell line and two different metastatic brain tumor cells. Selected ions in each profile were disassembled by ion trap mass spectrometry (MS(n)) which exhibited multiple structural differences between each tissue. These unique structures were identified within isomeric compositions as pendant nonreducing termini of di- and trisaccharide fragments, probably transparent to a tandem MS approach but distinctively not to sequential ion trap MS(n) detection.
Collapse
Affiliation(s)
- Justin M Prien
- Division of Molecular, Cellular, and Biomedical Sciences, The Glycomics Center, Durham, NH 03824, USA
| | | | | | | | | | | |
Collapse
|