1
|
Geng A, Jin M, Li N, Tu Z, Zhu D, Xie R, Wang Q, Sun J. Arabinan hydrolysis by GH43 enzymes of Hungateiclostridium clariflavum and the potential synergistic mechanisms. Appl Microbiol Biotechnol 2022; 106:7793-7803. [PMID: 36251023 DOI: 10.1007/s00253-022-12238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Glycoside hydrolase family 43 (GH43) represents a major source of arabinan- and arabinoxylan-active enzymes. Interestingly, some microbes remarkably enriched GH genes of this family, with the reason unknown. Hungateiclostridium clariflavum DSM 19,732 is an efficient lignocellulose degrader, which harbors up to 7 GH43 genes in its genome. We cloned three of the seven GH43 genes, and found that Abn43A is a unique endoarabinanase, which unprecedently showed approximately two times larger activity on sugar beet arabinan (116.8 U/mg) than that on linear arabinan, and it is efficient in arabinooligosaccharide production. Abn43B is an exoarabinanase which directly releases arabinose from linear arabinan. Abn43C is an α-L-arabinofuranosidase which is capable of splitting the arabinose side-chains from arabinooligosaccharides, arabinoxylooligosaccharides, and arabinoxylan. Most importantly, the three GH43 enzymes synergized in hydrolyzing arabinan. Compared to Abn43B alone, a supplement of Abn43A increased the arabinose production from linear arabinan by 150%, reaching 0.44 g/g arabinan. Moreover, an addition of Abn43C to Abn43A and Abn43B boosted the arabinose production from sugar beet arabinan by 15 times, reaching 0.262 g/g arabinan. Our work suggested the intensified functions of multiple GH43 enzymes toward arabinan degradation in H. clariflavum, and a potential synergetic mechanism among the three GH43 enzymes is suggested. KEY POINTS: • Endoarabinanase GH43A prefers branched substrate to linear one • Exoarabinanase GH43B can directly release arabinose from linear arabinan • The three GH43 enzymes synergized in arabinan hydrolysis.
Collapse
Affiliation(s)
- Alei Geng
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Meng Jin
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Nana Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhuowei Tu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rongrong Xie
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
3
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
4
|
Yue H, Jiang J, Taylor AJ, Leite ADL, Dodds ED, Du L. Outer Membrane Vesicle-Mediated Codelivery of the Antifungal HSAF Metabolites and Lytic Polysaccharide Monooxygenase in the Predatory Lysobacter enzymogenes. ACS Chem Biol 2021; 16:1079-1089. [PMID: 34032403 DOI: 10.1021/acschembio.1c00260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lysobacter are new biocontrol agents known for their prolific production of lytic enzymes and bioactive metabolites. L. enzymogenes is a predator of fungi and produces several structurally distinct antimicrobial compounds, such as the antifungal HSAF (heat stable antifungal factor) and analogs. The mechanism by which L. enzymogenes interacts with fungal prey is not well understood. Here, we found that the production of HSAF and analogs in L. enzymogenes OH11 was significantly induced in media supplemented with ground fungal mycelia or chitin. In the OH11 genome, we identified a gene (LeLPMO10A) that was annotated to encode a chitin-binding protein. The stimulation of HSAF and analogs by chitin was diminished when LeLPMO10A was deleted. We expressed the gene in E. coli and demonstrated that purified LeLPMO10A oxidatively cleaved chitin into oligomeric products, including 1,5 δ-lactones and aldonic acids. The results revealed that LeLPMO10A encodes a lytic polysaccharide monooxygenase, which has not been reported in Lysobacter. The metabolite analysis, antifungal assay, and proteomic analysis showed that the antifungal compounds and the chitin-cleaving LeLPMO10A are colocalized in outer membrane vesicles. The enzymatic products that resulted from in vitro LeLPMO10A-cleaved chitin also significantly induced HSAF and analogs in OH11. Scanning electron microscopic analysis indicated that spherical vesicles were formed outside of OH11 cells, and fewer OH11 cells were observed to attach to fungal hyphae when LeLPMO10A was deleted. Together, the study revealed a previously uncharacterized synergistic strategy utilized by the predatory Lysobacter during interaction with fungal prey.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Jiasong Jiang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Anna J. Taylor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Aline De Lima Leite
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Eric D. Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
5
|
Ferreira MJ, Mendes AL, de Sá-Nogueira I. The MsmX ATPase plays a crucial role in pectin mobilization by Bacillus subtilis. PLoS One 2017; 12:e0189483. [PMID: 29240795 PMCID: PMC5730181 DOI: 10.1371/journal.pone.0189483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Carbohydrates from plant cell walls are often found as heteropolysaccharides intertwined with each other. For competitive advantage against other microorganisms, and ability to fully exploit available carbon and energy sources, Bacillus subtilis possesses a high number of proteins dedicated to the uptake of mono- and oligosaccharides. Here, we characterize transporter complexes, belonging to the ATP-binding cassette (ABC) superfamily, involved in the uptake of oligosaccharides commonly found in pectin. The uptake of these carbohydrates is shown to be MsmX-dependent, assigning a key role in pectin mobilization for MsmX, a multipurpose ATPase serving several distinct ABC-type I sugar importers. Mutagenesis analysis of the transmembrane domains of the AraNPQ MsmX-dependent importer revealed putative residues for MsmX interaction. Interestingly however, although MsmX is shown to be essential for energizing various ABC transporters we found that a second B. subtilis ATPase, YurJ, is able to complement its function when placed in trans at a different locus of the chromosome.
Collapse
Affiliation(s)
- Mário J. Ferreira
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Aristides L. Mendes
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Isabel de Sá-Nogueira
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- * E-mail:
| |
Collapse
|
6
|
Enzymatic Mechanism for Arabinan Degradation and Transport in the Thermophilic Bacterium Caldanaerobius polysaccharolyticus. Appl Environ Microbiol 2017; 83:AEM.00794-17. [PMID: 28710263 DOI: 10.1128/aem.00794-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
The plant cell wall polysaccharide arabinan provides an important supply of arabinose, and unraveling arabinan-degrading strategies by microbes is important for understanding its use as a source of energy. Here, we explored the arabinan-degrading enzymes in the thermophilic bacterium Caldanaerobius polysaccharolyticus and identified a gene cluster encoding two glycoside hydrolase (GH) family 51 α-l-arabinofuranosidases (CpAbf51A, CpAbf51B), a GH43 endoarabinanase (CpAbn43A), a GH27 β-l-arabinopyranosidase (CpAbp27A), and two GH127 β-l-arabinofuranosidases (CpAbf127A, CpAbf127B). The genes were expressed as recombinant proteins, and the functions of the purified proteins were determined with para-nitrophenyl (pNP)-linked sugars and naturally occurring pectin structural elements as the substrates. The results demonstrated that CpAbn43A is an endoarabinanase while CpAbf51A and CpAbf51B are α-l-arabinofuranosidases that exhibit diverse substrate specificities, cleaving α-1,2, α-1,3, and α-1,5 linkages of purified arabinan-oligosaccharides. Furthermore, both CpAbf127A and CpAbf127B cleaved β-arabinofuranose residues in complex arabinan side chains, thus providing evidence of the function of this family of enzymes on such polysaccharides. The optimal temperatures of the enzymes ranged between 60°C and 75°C, and CpAbf43A and CpAbf51A worked synergistically to release arabinose from branched and debranched arabinan. Furthermore, the hydrolytic activity on branched arabinan oligosaccharides and degradation of pectic substrates by the endoarabinanase and l-arabinofuranosidases suggested a microbe equipped with diverse activities to degrade complex arabinan in the environment. Based on our functional analyses of the genes in the arabinan degradation cluster and the substrate-binding studies on a component of the cognate transporter system, we propose a model for arabinan degradation and transport by C. polysaccharolyticusIMPORTANCE Genomic DNA sequencing and bioinformatic analysis allowed the identification of a gene cluster encoding several proteins predicted to function in arabinan degradation and transport in C. polysaccharolyticus The analysis of the recombinant proteins yielded detailed insights into the putative arabinan metabolism of this thermophilic bacterium. The use of various branched arabinan oligosaccharides provided a detailed understanding of the substrate specificities of the enzymes and allowed assignment of two new GH127 polypeptides as β-l-arabinofuranosidases able to degrade pectic substrates, thus expanding our knowledge of this rare group of glycoside hydrolases. In addition, the enzymes showed synergistic effects for the degradation of arabinans at elevated temperatures. The enzymes characterized from the gene cluster are, therefore, of utility for arabinose production in both the biofuel and food industries.
Collapse
|
7
|
Lang C, Yang R, Yang Y, Gao B, Zhao L, Wei W, Wang H, Matsukawa S, Xie J, Wei D. An Acid-Adapted Endo-α-1,5-L-arabinanase for Pectin Releasing. Appl Biochem Biotechnol 2016; 180:900-916. [PMID: 27246002 DOI: 10.1007/s12010-016-2141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
An arabinanase gene was cloned by overlap-PCR from Penicillium sp. Y702 and expressed in Pichia pastoris. The recombinant enzyme was named AbnC702 with 20 U/mg of endo-arabinanase activity toward linear α-1,5-L-arabinan. The optimal pH and temperature of AbnC702 were 5.0 and 50 °C, respectively. The recombinant AbnC702 was highly stable at pH 5.0-7.0 and 50 °C. It could retain about 72.3 % of maximum specific activity at pH 5.0 after incubation for 2.5 h, which indicated AbnC702 was an acid-adapted enzyme. The K m and V max values were 24.8 ± 4.7 mg/ml and 88.5 ± 5.6 U/mg, respectively. A three-dimensional structure of AbnC702 was made by homology modeling, and the counting of acidic/basic amino residues within the region of 10 Å around the active site, as well the hydrogen bonds within the area of 5 Å around the active site, might theoretically interpret the acid adaptability of AbnC702. Analysis of hydrolysis products by thin layer chromatography (TLC) combined with high-performance liquid chromatography (HPLC) verified that the recombinant AbnC702 was an endo-1,5-α-L-arabinanase, which yielded arabinobiose and arabinotriose as major products. AbnC702 was applied in pectin extraction from apple pomace with synergistic action of α-L-arabinofuranosidase.
Collapse
Affiliation(s)
- Chong Lang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Rujian Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shingo Matsukawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
8
|
Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis. J Bacteriol 2016; 198:2887-96. [PMID: 27501980 DOI: 10.1128/jb.00468-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is found as the side chain of the rhamnogalacturonan type I complex in pectin, has remained partially studied. Here, we investigated the galactan utilization system consisting of the ganSPQAB operon and its regulator ganR This study improves our knowledge of the carbohydrate degradation systems of B. subtilis, especially the pectin degradation systems. Moreover, the galactan-degrading enzymes may be exploited for the production of galacto-oligosaccharides, which are used as prebiotic substances in the food industry.
Collapse
|
9
|
Machado CB, Citadini AP, Goldbeck R, de Lima EA, Figueiredo FL, da Silva TM, Hoffmam ZB, de Sousa AS, Squina FM, de Lourdes Teixeira de Moraes Poliz M, Ruller R, Ward RJ. Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnol Lett 2015; 37:1455-62. [DOI: 10.1007/s10529-015-1818-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
|
10
|
Chen Z, Liu Y, Yan Q, Yang S, Jiang Z. Biochemical Characterization of a Novel Endo-1,5-α-l-arabinanase from Rhizomucor miehei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1226-1233. [PMID: 25582414 DOI: 10.1021/jf5058167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel gene (designated as RmArase) encoding endo-1,5-α-l-arabinanase from a thermophilic fungus Rhizomucor miehei was cloned and expressed in Escherichia coli. The gene had an open reading frame (ORF) of 930 base pairs (bp) encoding 309 amino acids. The amino acid sequence shared highest identity (56%) with a glycoside hydrolase (GH) family 43 endo-1,5-α-l-arabinase from Bacillus subtilis and low identity (35%) with the endo-1,5-α-l-arabinase from Aspergillus niger. The recombinant endo-1,5-α-l-arabinase (RmArase) was purified to homogeneity with a molecular mass of 40.6 kDa. The purified enzyme had a specific activity of 109 units/mg. The optimal temperature and pH of RmArase were determined to be 55 °C and 5.5, respectively. It was stable up to 45 °C and within pH 5.0-8.5. The Km values of RmArase toward debranched arabinan and sugar beet arabinan were 5.8 and 27.5 mg/mL, respectively. RmArase efficiently degraded arabinans to yield and arabinobiose and arabinose as major end products, which was different from most other endo-1,5-α-l-arabinases. The synergistic action of RmArase and the pectinase could significantly improve the degradation of sugar beet pulp. These properties make RmArase useful in several industries.
Collapse
Affiliation(s)
- Zhou Chen
- Bioresource Utilization Laboratory, College of Engineering, and ‡Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Yu Liu
- Bioresource Utilization Laboratory, College of Engineering, and ‡Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, and ‡Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Shaoqing Yang
- Bioresource Utilization Laboratory, College of Engineering, and ‡Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| | - Zhengqiang Jiang
- Bioresource Utilization Laboratory, College of Engineering, and ‡Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, People's Republic of China
| |
Collapse
|
11
|
Wang S, Yang Y, Zhang J, Sun J, Matsukawa S, Xie J, Wei D. Characterization of abnZ2 (yxiA1) and abnZ3 (yxiA3) in Paenibacillus polymyxa, encoding two novel endo-1,5-α-l-arabinanases. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0014-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Protopectinases which were consisted of various different enzymes can promote the solubilization of protopectin from the plant cell and can be applied in the protein industry extraction. The genome sequence of Paenibacillus polymyxa Z6 that produces a protopectinases complex was partially determined. Two new genes, yxiA1 and yxiA3, were identified as uncharacterized protein in the P. polymyxa genome. And, they were classified as the member of the glycoside hydrolase family 43 (GH43) according to the primary protein sequence.
Results
The two genes were cloned and expressed in Escherichia coli BL21 (DE3). And, the results indicated that the product of yxiA1 and yxiA3 were two endo-α-1,5-l-arabinanases. Thus, the two genes were renamed as abnZ2 (yxiA1) and abnZ3 (yxiA3). Recombinant AbnZ2 had optimal activity at pH 6.0 and 35°C. And, AbnZ3 had optimal activity at pH 6.0 and 30°C. However, unlike most reported endo-arabinanases, the specific activity of AbnZ3 remained 48.7% of maximum at 5°C, which meant AbnZ3 was an excellent cold-adapted enzyme.
Conclusions
This paper demonstrated that the gene yxiA1 and yxiA3 were two new endo-arabinanases, and renamed as abnZ2 and abnZ3. Moreover AbnZ3 was an excellent cold-adapted enzyme which could be attractive in fruit juice processing.
Collapse
|
12
|
Wang S, Yang Y, Yang R, Zhang J, Chen M, Matsukawa S, Xie J, Wei D. Cloning and characterization of a cold-adapted endo-1,5-α-L-arabinanase from Paenibacillus polymyxa and rational design for acidic applicability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8460-8469. [PMID: 25077565 DOI: 10.1021/jf501328n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AbnZ1, with optimal pH of 6.0 and optimal temperature of 40 °C, is a cold-adapted endo-1,5-α-L-arabinanase encoded by the gene abnZ1 from Paenibacillus polymyxa Z6. The specific activity of AbnZ1 remained 54.1% of maximum at 5 °C. To apply AbnZ1 in acidic conditions, three basic hsitidine (His) residues, His(48), His(218), and His(297), around the catalytic domain were selected as mutation sites, which were replaced with Asp, Glu, Arg, and Lys, respectively, to yield 12 mutants, H48D/E/R/K, H218D/E/R/K, and H297D/E/R/K. The optimum pH of mutant H218D shifted toward the acidic direction by 0.5 unit, and the relative activity was enhanced from 20.4 to 55.7% at pH 5.0. Furthermore, the specific activity of H218D in optimal conditions was 82.6 U/mg versus that of wild type, 73.4 U/mg, and the K(m) decreased from 11.9 to 7.1 mg/mL. This work provided an arabinanase candidate for juice clarification and pectin extraction.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shi H, Ding H, Huang Y, Wang L, Zhang Y, Li X, Wang F. Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum. BMC Biotechnol 2014; 14:35. [PMID: 24886412 PMCID: PMC4021227 DOI: 10.1186/1472-6750-14-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arabinan is an important plant polysaccharide degraded mainly by two hydrolytic enzymes, endo-arabinanase and α-L-arabinofuranosidase. In this study, the characterization and application in arabinan degradation of an endo-arabinanase from Thermotoga thermarum were investigated. RESULTS The recombinant endo-arabinanase was expressed in Escherichia coli BL21 (DE3) and purified by heat treatment followed by purification on a nickel affinity column chromatography. The purified endo-arabinanase exhibited optimal activity at pH 6.5 and 75°C and its residual activity retained more than 80% of its initial activity after being incubated at 80°C for 2 h. The results showed that the endo-arabinanase was very effective for arabinan degradation at higher temperature. When linear arabinan was used as the substrate, the apparent K(m) and V(max) values were determined to be 12.3 ± 0.15 mg ml⁻¹ and 1,052.1 ± 12.7 μmol ml⁻¹ min⁻¹, respectively (at pH 6.5, 75°C), and the calculated kcat value was 349.3 ± 4.2 s⁻¹. CONCLUSIONS This work provides a useful endo-arabinanase with high thermostability andcatalytic efficiency, and these characteristics exhibit a great potential for enzymatic conversion of arabinan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
McVey CE, Ferreira MJ, Correia B, Lahiri S, de Sanctis D, Carrondo MA, Lindley PF, de Sá Nogueira I, Soares CM, Bento I. The importance of the Abn2 calcium cluster in the endo-1,5-arabinanase activity from Bacillus subtilis. J Biol Inorg Chem 2014; 19:505-13. [PMID: 24549757 DOI: 10.1007/s00775-014-1105-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
15
|
Huy ND, Thiyagarajan S, Choi YE, Kim DH, Park SM. Cloning and characterization of a thermostable endo-arabinanase from Phanerochaete chrysosporium and its synergistic action with endo-xylanase. Bioprocess Biosyst Eng 2013; 36:677-85. [PMID: 23361183 DOI: 10.1007/s00449-013-0891-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
Putative arabinanase (PcARA) was cloned from cDNA of Phanerochaete chrysosporium. The gene sequencing indicated that PcARA consisted of 939 nucleotides that encodes for 312 amino acid arabinanase-polypeptide chain, including a signal peptide of 19 amino acids. Three-dimensional homology indicated that this enzyme is a five-bladed β-propeller, belonging to glycosidase family 43 and its secondary structure is consisted of 24 β-sheets. The PcARA-cDNA was expressed in Pichia pastoris using pPICZαC. SDS-PAGE of purified arabinanase showed a single band of 33 kDa that is very close to theoretical molecular mass of 33.9 kDa calculated by its amino acid content. Recombinant arabinanase (rPcARA) exhibited maximum activity at pH and temperature of 5.0 and 60 °C, respectively. End-product analysis of debranched arabinan hydrolysis by thin-layer chromatography indicated that rPcARA acted as endo-type. The synergistic action of rPcARA with recombinant xylanase resulted in 72 and 9.3 % release of total soluble sugar of arabinoxylan and NaOH-pretreated barley straw, respectively.
Collapse
Affiliation(s)
- Nguyen Duc Huy
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, 570-752, Korea
| | | | | | | | | |
Collapse
|
16
|
Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, Shin CS, Han NS, Kim TJ. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J Microbiol 2012; 50:1041-6. [PMID: 23274993 DOI: 10.1007/s12275-012-2489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/19/2012] [Indexed: 11/25/2022]
Abstract
An endo-arabinanase (BLABNase) gene from Bacillus licheniformis DSM13 was cloned and expressed in Escherichia coli, and the biochemical properties of its encoded enzyme were characterized. The BLABNase gene consists of a single open reading frame of 987 nucleotides that encodes 328 amino acids with a predicted molecular mass of about 36 kDa. BLABNase exhibited the highest activity against debranched α-(1,5)-arabinan in 50 mM sodium acetate buffer (pH 6.0) at 55°C. Enzymatic characterization revealed that BLABNase hydrolyzes debranched or linear arabinans with a much higher activity than branched arabinan from sugar beet. Enzymatic hydrolysis pattern analyses demonstrated BLABNase to be a typical endo-(1,5)-α-S-arabinanase (EC 3.2.1.99) that randomly cleaves the internal α-(1,5)-linked L-arabinofuranosyl residues of a branchless arabinan backbone to release arabinotriose mainly, although a small amount of arabino-oligosaccharide intermediates is also liberated. Our results indicated that BLABNase acts preferentially along with the oligosaccharides longer than arabinopentaose, thus enabling the enzymatic production of various arabino-oligosaccharides.
Collapse
Affiliation(s)
- Jung-Mi Park
- Department of Food Science and Technology, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Moraïs S, Salama-Alber O, Barak Y, Hadar Y, Wilson DB, Lamed R, Shoham Y, Bayer EA. Functional association of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 β-xylosidase. J Biol Chem 2012; 287:9213-21. [PMID: 22270362 PMCID: PMC3308730 DOI: 10.1074/jbc.m111.314286] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 01/19/2012] [Indexed: 11/06/2022] Open
Abstract
β-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 β-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55-60 °C and 5.5-6, respectively, were determined. The apparent K(m) value was 0.55 mM, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (k(cat)) was 6.72 s(-1). T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity.
Collapse
Affiliation(s)
- Sarah Moraïs
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Faculty of Agricultural, Food, and Environmental Quality Sciences, Hebrew University of Jerusalem, P. O. Box 12, Rehovot 76100, Israel
| | - Orly Salama-Alber
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Barak
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- the Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yitzhak Hadar
- the Faculty of Agricultural, Food, and Environmental Quality Sciences, Hebrew University of Jerusalem, P. O. Box 12, Rehovot 76100, Israel
| | - David B. Wilson
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Raphael Lamed
- the Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel, and
| | - Yuval Shoham
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edward A. Bayer
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Lim YR, Yeom SJ, Kim YS, Oh DK. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. BIORESOURCE TECHNOLOGY 2011; 102:4277-4280. [PMID: 21216591 DOI: 10.1016/j.biortech.2010.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The optimum conditions for the production of L-arabinose from debranched arabinan were determined to be pH 6.5, 75°C, 20 g l(-1) debranched arabinan, 42 Um l(-1) endo-1,5-α-L-arabinanase, and 14 U ml(-1) α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75°C, 20 g l(-1) sugar beet arabinan, 3 U ml(-1) endo-1,5-α-L-arabinanase, and 24 U ml(-1) α-L-arabinofuranosidase. Under the optimum conditions, 16 g l(-1)l-arabinose was obtained from 20 g l(-1) debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l(-1)h(-1). This is the first reported trial for the production of L-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.
Collapse
Affiliation(s)
- Yu-Ri Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | | | | | | |
Collapse
|
19
|
Fukada Y, Koide O, Miura T, Kobayashi T, Inoue A, Horikoshi K. Endo-1,5-.ALPHA.-L-arabinanase from a Subseafloor Bacillus subtilis: Purification, Characterization and Nucleotide Sequence of Its Gene. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2010_017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Yoshida S, Hespen CW, Beverly RL, Mackie RI, Cann IKO. Domain analysis of a modular alpha-L-Arabinofuranosidase with a unique carbohydrate binding strategy from the fiber-degrading bacterium Fibrobacter succinogenes S85. J Bacteriol 2010; 192:5424-36. [PMID: 20709893 PMCID: PMC2950500 DOI: 10.1128/jb.00503-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/03/2010] [Indexed: 11/20/2022] Open
Abstract
Family 43 glycoside hydrolases (GH43s) are known to exhibit various activities involved in hemicellulose hydrolysis. Thus, these enzymes contribute to efficient plant cell wall degradation, a topic of much interest for biofuel production. In this study, we characterized a unique GH43 protein from Fibrobacter succinogenes S85. The recombinant protein showed α-l-arabinofuranosidase activity, specifically with arabinoxylan. The enzyme is, therefore, an arabinoxylan arabinofuranohydrolase (AXH). The F. succinogenes AXH (FSUAXH1) is a modular protein that is composed of a signal peptide, a GH43 catalytic module, a unique β-sandwich module (XX domain), a family 6 carbohydrate-binding module (CBM6), and F. succinogenes-specific paralogous module 1 (FPm-1). Truncational analysis and site-directed mutagenesis of the protein revealed that the GH43 domain/XX domain constitute a new form of carbohydrate-binding module and that residue Y484 in the XX domain is essential for binding to arabinoxylan, although protein structural analyses may be required to confirm some of the observations. Kinetic studies demonstrated that the Y484A mutation leads to a higher k(cat) for a truncated derivative of FSUAXH1 composed of only the GH43 catalytic module and the XX domain. However, an increase in the K(m) for arabinoxylan led to a 3-fold decrease in catalytic efficiency. Based on the knowledge that most XX domains are found only in GH43 proteins, the evolutionary relationships within the GH43 family were investigated. These analyses showed that in GH43 members with a XX domain, the two modules have coevolved and that the length of a loop within the XX domain may serve as an important determinant of substrate specificity.
Collapse
Affiliation(s)
- Shosuke Yoshida
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Biochemistry, Department of Microbiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Charles W. Hespen
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Biochemistry, Department of Microbiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Robert L. Beverly
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Biochemistry, Department of Microbiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Roderick I. Mackie
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Biochemistry, Department of Microbiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| | - Isaac K. O. Cann
- Energy Biosciences Institute, Institute for Genomic Biology, Department of Biochemistry, Department of Microbiology, Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
21
|
de Sanctis D, Inácio JM, Lindley PF, de Sá-Nogueira I, Bento I. New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. FEBS J 2010; 277:4562-74. [PMID: 20883454 DOI: 10.1111/j.1742-4658.2010.07870.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Endo-1,5-α-L-arabinanases are glycosyl hydrolases that are able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. Two extracellular endo-1,5-α-L-arabinanases have been isolated from Bacillus subtilis, BsArb43A and BsArb43B (formally named AbnA and Abn2, respectively). BsArb43B shows low sequence identity with previously characterized 1,5-α-L-arabinanases and is a much larger enzyme. Here we describe the 3D structure of native BsArb43B, biochemical and structure characterization of two BsArb43B mutant proteins (H318A and D171A), and the 3D structure of the BsArb43B D171A mutant enzyme in complex with arabinohexose. The 3D structure of BsArb43B is different from that of other structurally characterized endo-1,5-α-L-arabinanases, as it comprises two domains, an N-terminal catalytic domain, with a 3D fold similar to that observed for other endo-1,5-α-L-arabinanases, and an additional C-terminal domain. Moreover, this work also provides experimental evidence for the presence of a cluster containing a calcium ion in the catalytic domain, and the importance of this calcium ion in the enzymatic mechanism of BsArb43B.
Collapse
Affiliation(s)
- Daniele de Sanctis
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
22
|
Seo ES, Lim YR, Kim YS, Park CS, Oh DK. Characterization of a recombinant endo-1,5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3138-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Squina FM, Santos CR, Ribeiro DA, Cota J, de Oliveira RR, Ruller R, Mort A, Murakami MT, Prade RA. Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochem Biophys Res Commun 2010; 399:505-11. [DOI: 10.1016/j.bbrc.2010.07.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
24
|
Hong MR, Park CS, Oh DK. Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol Lett 2009; 31:1439-43. [DOI: 10.1007/s10529-009-0019-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/13/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
25
|
Inácio JM, Correia IL, de Sá-Nogueira I. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. MICROBIOLOGY-SGM 2008; 154:2719-2729. [PMID: 18757805 DOI: 10.1099/mic.0.2008/018978-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis produces alpha-l-arabinofuranosidases (EC 3.2.1.55; AFs) capable of releasing arabinosyl oligomers and l-arabinose from plant cell walls. Here, we show by insertion-deletion mutational analysis that genes abfA and xsa(asd), herein renamed abf2, encode AFs responsible for the majority of the intracellular AF activity in B. subtilis. Both enzyme activities were shown to be cytosolic and functional studies indicated that arabino-oligomers are natural substrates for the AFs. The products of the two genes were overproduced in Escherichia coli, purified and characterized. The molecular mass of the purified AbfA and Abf2 was about 58 kDa and 57 kDa, respectively. However, native PAGE gradient gel analysis and cross-linking assays detected higher-order structures (>250 kDa), suggesting a multimeric organization of both enzymes. Kinetic experiments at 37 degrees C, with p-nitrophenyl-alpha-l-arabinofuranoside as substrate, gave an apparent K(m) of 0.498 mM and 0.421 mM, and V(max) of 317 U mg(-1) and 311 U mg(-1) for AbfA and Abf2, respectively. The two enzymes displayed maximum activity at 50 degrees C and 60 degrees C, respectively, and both proteins were most active at pH 8.0. AbfA and Abf2 both belong to family 51 of the glycoside hydrolases but have different substrate specificity. AbfA acts preferentially on (1-->5) linkages of linear alpha-1,5-l-arabinan and alpha-1,5-linked arabino-oligomers, and is much less effective on branched sugar beet arabinan and arabinoxylan and arabinogalactan. In contrast, Abf2 is most active on (1-->2) and (1-->3) linkages of branched arabinan and arabinoxylan, suggesting a concerted contribution of these enzymes to optimal utilization of arabinose-containing polysaccharides by B. subtilis.
Collapse
Affiliation(s)
- José Manuel Inácio
- Laboratory of Microbial Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apt 127, 2781-901 Oeiras, Portugal
| | - Isabel Lopes Correia
- Laboratory of Microbial Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apt 127, 2781-901 Oeiras, Portugal
| | - Isabel de Sá-Nogueira
- Departamento de CiÁncias da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.,Laboratory of Microbial Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apt 127, 2781-901 Oeiras, Portugal
| |
Collapse
|
26
|
Cloning and characterization of a novel exo-α-1,5-L-arabinanase gene and the enzyme. Appl Microbiol Biotechnol 2008; 79:941-9. [DOI: 10.1007/s00253-008-1504-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/04/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
|
27
|
de Sanctis D, Bento I, Inácio JM, Custódio S, de Sá-Nogueira I, Carrondo MA. Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-alpha-arabinanase from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:636-8. [PMID: 18607095 DOI: 10.1107/s1744309108016321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/29/2008] [Indexed: 05/25/2023]
Abstract
Two Bacillus subtilis extracellular endo-1,5-alpha-L-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-alpha-L-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized. Crystals appeared in two different space groups: P1, with unit-cell parameters a = 51.9, b = 57.6, c = 86.2 A, alpha = 82.3, beta = 87.9, gamma = 63.6 degrees , and P2(1)2(1)2(1), with unit-cell parameters a = 57.9, b = 163.3, c = 202.0 A. X-ray data have been collected for the native and the SeMet derivative to 1.9 and 2.7 A resolution, respectively. An initial model of Abn2 is being built in the SeMet-phased map.
Collapse
Affiliation(s)
- Daniele de Sanctis
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J Bacteriol 2008; 190:4272-80. [PMID: 18408032 DOI: 10.1128/jb.00162-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-alpha-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent K(m) of 2.0 mg ml(-1) and V(max) of 0.25 mmol min(-1) mg(-1) at pH 7.0 and 50 degrees C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a sigma(A)-dependent and a sigma(H)-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.
Collapse
|
29
|
Bourgois TM, Van Craeyveld V, Van Campenhout S, Courtin CM, Delcour JA, Robben J, Volckaert G. Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase. Appl Microbiol Biotechnol 2007; 75:1309-17. [PMID: 17426966 DOI: 10.1007/s00253-007-0956-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/19/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
The complete genome sequence of Bacillus subtilis reveals that sequences encoding several hemicellulases are co-localised with a gene (xynD) encoding a putative family 43 glycoside hydrolase that has not yet been characterised. In this work, xynD has been isolated from genomic DNA of B. subtilis subsp. subtilis ATCC 6051 and cloned for cytoplasmatic expression in Escherichia coli. Recombinant XynD (rXynD) was purified using ion-exchange chromatography and gel permeation chromatography. The enzyme had a molecular mass of approximately 52 kDa, a pI above 9.0 and releases alpha-L-arabinose from arabinoxylo-oligosaccharides as well as arabinoxylan polymers with varying degree of substitution. Using para-nitrophenyl-alpha-L-arabinofuranoside as substrate, maximum activity was observed at pH 5.6 and 45 degrees C. The enzyme retained its activity over a large pH range, while activity was lost after pre-incubation above 50 degrees C. Gas-liquid chromatography and proton nuclear magnetic resonance spectrometry analysis indicated that rXynD specifically releases arabinofuranosyl groups from mono-substituted C-(O)-2 and C-(O)-3 xylopyranosyl residues on the xylan backbone. As rXynD did not display endoxylanase, xylosidase or arabinanase activity and was inactive on arabinan, we conclude that this enzyme is best described as an arabinoxylan arabinofuranohydrolase.
Collapse
Affiliation(s)
- Tine M Bourgois
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Franco IS, Mota LJ, Soares CM, de Sá-Nogueira I. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding. J Bacteriol 2006; 188:3024-36. [PMID: 16585763 PMCID: PMC1446991 DOI: 10.1128/jb.188.8.3024-3036.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis AraR transcription factor represses at least 13 genes required for the extracellular degradation of arabinose-containing polysaccharides, transport of arabinose, arabinose oligomers, xylose, and galactose, intracellular degradation of arabinose oligomers, and further catabolism of this sugar. AraR exhibits a chimeric organization comprising a small N-terminal DNA-binding domain that contains a winged helix-turn-helix motif similar to that seen with the GntR family and a larger C-terminal domain homologous to that of the LacI/GalR family. Here, a model for AraR was derived based on the known crystal structures of the FadR and PurR regulators from Escherichia coli. We have used random mutagenesis, deletion, and construction of chimeric LexA-AraR fusion proteins to map the functional domains of AraR required for DNA binding, dimerization, and effector binding. Moreover, predictions for the functional role of specific residues were tested by site-directed mutagenesis. In vivo analysis identified particular amino acids required for dimer assembly, formation of the nucleoprotein complex, and composition of the sugar-binding cleft. This work presents a structural framework for the function of AraR and provides insight into the mechanistic mode of action of this modular repressor.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|