1
|
Kim S, Shin WH, Kang Y, Kim H, Lee JY. Direct visualization of replication and R-loop collision using single-molecule imaging. Nucleic Acids Res 2024; 52:259-273. [PMID: 37994723 PMCID: PMC10783495 DOI: 10.1093/nar/gkad1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures that can cause replication stress by blocking replication fork progression. However, the detailed mechanism underlying the collision of DNA replication forks and R-loops remains elusive. To investigate how R-loops induce replication stress, we use single-molecule fluorescence imaging to directly visualize the collision of replicating Phi29 DNA polymerase (Phi29 DNAp), the simplest replication system, and R-loops. We demonstrate that a single R-loop can block replication, and the blockage is more pronounced when an RNA-DNA hybrid is on the non-template strand. We show that this asymmetry results from secondary structure formation on the non-template strand, which impedes the progression of Phi29 DNAp. We also show that G-quadruplex formation on the displaced single-stranded DNA in an R-loop enhances the replication stalling. Moreover, we observe the collision between Phi29 DNAp and RNA transcripts synthesized by T7 RNA polymerase (T7 RNAp). RNA transcripts cause more stalling because of the presence of T7 RNAp. Our work provides insights into how R-loops impede DNA replication at single-molecule resolution.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Woo Hee Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Institute of Basic Science Center for Genomic Integrity, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Zhang R, Ma ZH, Wu BM. Multiple displacement amplification of whole genomic DNA from urediospores of Puccinia striiformis f. sp. tritici. Curr Genet 2015; 61:221-30. [PMID: 25652158 DOI: 10.1007/s00294-014-0470-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/04/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022]
Abstract
Biotrophic fungi, such as Puccinia striiformis f. sp. tritici, because they cannot be cultured on nutrient media, to obtain adequate quantity of DNA for molecular genetic analysis, are usually propagated on living hosts, wheat plants in case of P. striiformis f. sp. tritici. The propagation process is time-, space- and labor-consuming and has been a bottleneck to molecular genetic analysis of this pathogen. In this study we evaluated multiple displacement amplification (MDA) of pathogen genomic DNA from urediospores as an alternative approach to traditional propagation of urediospores followed by DNA extraction. The quantities of pathogen genomic DNA in the products were further determined via real-time PCR with a pair of primers specific for the β-tubulin gene of P. striiformis f. sp. tritici. The amplified fragment length polymorphism (AFLP) fingerprints were also compared between the DNA products. The results demonstrated that adequate genomic DNA at fragment size larger than 23 Kb could be amplified from 20 to 30 urediospores via MDA method. The real-time PCR results suggested that although fresh urediospores collected from diseased leaves were the best, spores picked from diseased leaves stored for a prolonged period could also be used for amplification. AFLP fingerprints exhibited no significant differences between amplified DNA and DNA extracted with CTAB method, suggesting amplified DNA can represent the pathogen's genomic DNA very well. Therefore, MDA could be used to obtain genomic DNA from small precious samples (dozens of spores) for molecular genetic analysis of wheat stripe rust pathogen, and other fungi that are difficult to propagate.
Collapse
Affiliation(s)
- R Zhang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Rd., Beijing, 100193, China
| | | | | |
Collapse
|
3
|
Gadkar VJ, Filion M. A linear concatenation strategy to construct 5'-enriched amplified cDNA libraries using multiple displacement amplification. Mol Biotechnol 2013; 54:541-50. [PMID: 22941734 DOI: 10.1007/s12033-012-9594-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In various experimental systems, limiting available amounts of RNA may prevent a researcher from performing large-scale analyses of gene transcripts. One way to circumvent this is to 'pre-amplify' the starting RNA/cDNA, so that sufficient amounts are available for any downstream analysis. In the present study, we report the development of a novel protocol for constructing amplified cDNA libraries using the Phi29 DNA polymerase based multiple displacement amplification (MDA) system. Using as little as 200 ng of total RNA, we developed a linear concatenation strategy to make the single-stranded cDNA template amenable for MDA. The concatenation, made possible by the template switching property of the reverse transcriptase enzyme, resulted in the amplified cDNA library with intact 5' ends. MDA generated micrograms of template, allowing large-scale polymerase chain reaction analyses or other large-scale downstream applications. As the amplified cDNA library contains intact 5' ends, it is also compatible with 5' RACE analyses of specific gene transcripts. Empirical validation of this protocol is demonstrated on a highly characterized (tomato) and an uncharacterized (corn gromwell) experimental system.
Collapse
Affiliation(s)
- Vijay J Gadkar
- Department of Biology, Université de Moncton, Moncton, Canada
| | | |
Collapse
|
4
|
Gadkar VJ, Arseneault T, Filion M. Fidelity and representativeness of two isothermal multiple displacement amplification systems to preamplify limiting amounts of total RNA. Mol Biotechnol 2013; 56:377-85. [PMID: 24198216 DOI: 10.1007/s12033-013-9718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we investigated the fidelity and representativeness of two novel multiple displacement amplification (MDA) protocols leading to whole transcriptome amplification (WTA). WTA is used to amplify a limiting amount of experimental RNA, allowing its use in downstream applications. Using Phi29 and Bst DNA polymerase-based MDA, henceforth referred to as WTA-Phi and WTA-Bst, respectively, we successfully amplified very low amounts of linearly concatenated cDNA originating from 10 to 100 ng of starting RNA. The average yield obtained from 10 ng was 3.5 and 4.7 μg for WTA-Phi and WTA-Bst, respectively, while 100 ng of starting RNA yielded 7.0 and 12.4 μg for WTA-Phi and WTA-Bst, respectively. Representational distortion of the templates, analyzed via conventional PCR, showed robust amplification of 11 different transcripts when either WTA-Phi or WTA-Bst synthesized templates were used, while some transcripts were not detected from unamplified templates. Loci representation, a measure of amplification consistency, was evaluated using TaqMan RT-qPCR amplification of five different transcripts, yielding values ranging from 96.4 to 189.3 %, comparable to those obtained using genomic target-based MDA systems. The two MDA protocols described in this study efficiently lead to representative WTA, using as little as 10 ng of starting RNA.
Collapse
Affiliation(s)
- Vijay J Gadkar
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave, Moncton, NB, E1A 3E9, Canada
| | | | | |
Collapse
|
5
|
Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, Roberts MS. Free tropospheric transport of microorganisms from Asia to North America. MICROBIAL ECOLOGY 2012; 64:973-85. [PMID: 22760734 DOI: 10.1007/s00248-012-0088-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/18/2012] [Indexed: 05/06/2023]
Abstract
Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.
Collapse
Affiliation(s)
- David J Smith
- Biology and Astrobiology, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bärlocher F, Charette N, Letourneau A, Nikolcheva LG, Sridhar KR. Sequencing DNA extracted from single conidia of aquatic hyphomycetes. FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2009.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Whole genome amplification of the rust Puccinia striiformis f. sp. tritici from single spores. J Microbiol Methods 2009; 77:229-34. [PMID: 19233233 DOI: 10.1016/j.mimet.2009.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/11/2009] [Indexed: 11/24/2022]
Abstract
Rust fungi are obligate parasites and cannot be routinely cultured to obtain sufficient biomass for DNA extractions. Multiple displacement amplification (MDA) was demonstrated in this study for whole genome amplification from single spores of the rust fungus, Puccinia striiformis. The genomic DNA coverage and fidelity of this method was evaluated by PCR amplification and sequencing of two genetic markers: portions of the multi-copy nuclear ribosomal DNA internal transcribed spacer region (ITS) and the single copy beta-tubulin gene from two geographical diverse isolates. Our results show that MDA is a valuable tool for whole genome amplification from single spores, and we propose that MDA-amplified DNA can be used for molecular genetic analysis of the wheat yellow rust fungus.
Collapse
|
8
|
Rasooly A, Herold KE. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog Dis 2008; 5:531-50. [PMID: 18673074 DOI: 10.1089/fpd.2008.0119] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis.
Collapse
Affiliation(s)
- Avraham Rasooly
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, USA.
| | | |
Collapse
|
9
|
Croll D, Corradi N, Gamper HA, Sanders IR. Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. THE NEW PHYTOLOGIST 2008; 180:564-568. [PMID: 18684159 DOI: 10.1111/j.1469-8137.2008.02602.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Daniel Croll
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Corradi
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Hannes A Gamper
- Netherlands Institute of Ecology, Center for Terrestrial Ecology, Boterhoeksestraat 48, PO Box 40, NL-6666 ZG, Heteren, The Netherlands
| | - Ian R Sanders
- Department of Ecology & Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A. Microsatellites for disentangling underground networks: Strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 2008; 45:812-7. [DOI: 10.1016/j.fgb.2008.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/28/2022]
|
11
|
Frumkin D, Wasserstrom A, Itzkovitz S, Harmelin A, Rechavi G, Shapiro E. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues. BMC Biotechnol 2008; 8:17. [PMID: 18284708 PMCID: PMC2266725 DOI: 10.1186/1472-6750-8-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 02/20/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Whole genome amplification (WGA) and laser assisted micro-dissection represent two recently developed technologies that can greatly advance biological and medical research. WGA allows the analysis of multiple genomic loci from a single genome and has been performed on single cells from cell suspensions and from enzymatically-digested tissues. Laser micro-dissection makes it possible to isolate specific single cells from heterogeneous tissues. RESULTS Here we applied for the first time WGA on laser micro-dissected single cells from stained tissue sections, and developed a protocol for sequentially performing the two procedures. The combined procedure allows correlating the cell's genome with its natural morphology and precise anatomical position. From each cell we amplified 122 genomic and mitochondrial loci. In cells obtained from fresh tissue sections, 64.5% of alleles successfully amplified to approximately 700000 copies each, and mitochondrial DNA was amplified successfully in all cells. Multiplex PCR amplification and analysis of cells from pre-stored sections yielded significantly poorer results. Sequencing and capillary electrophoresis of WGA products allowed detection of slippage mutations in microsatellites (MS), and point mutations in P53. CONCLUSION Comprehensive genomic analysis of single cells from stained tissue sections opens new research opportunities for cell lineage and depth analyses, genome-wide mutation surveys, and other single cell assays.
Collapse
Affiliation(s)
- Dan Frumkin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
12
|
Binga EK, Lasken RS, Neufeld JD. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME JOURNAL 2008; 2:233-41. [PMID: 18256705 DOI: 10.1038/ismej.2008.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.
Collapse
Affiliation(s)
- Erik K Binga
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
13
|
Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. Multiple displacement amplification, a powerful tool for molecular genetic analysis of powdery mildew fungi. Curr Genet 2007; 51:209-19. [PMID: 17256172 DOI: 10.1007/s00294-006-0117-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/15/2006] [Accepted: 12/20/2006] [Indexed: 11/25/2022]
Abstract
Powdery mildew fungi (Erysiphales) are probably the largest group of plant pathogens that remain uncharacterized from genetic and molecular points of view, with the only exception of the powdery mildew of cereals, Blumeria graminis. Their nature as obligate biotrophic parasites and consequent inability to grow on culture media has significantly hampered research. A common bottleneck to the molecular genetic analysis of powdery mildew fungi is the availability of genomic DNA of suitable quality and in sufficient quantity. The so-called whole genome amplification technology has the potential to overcome this limitation. Here we present the application of phi29 DNA polymerase-mediated multiple displacement amplification (MDA) to amplify the whole genome of Podosphaera fusca, the main causal agent of powdery mildew in cucurbits, to address this problem. The genome coverage and fidelity of the MDA process was evaluated by PCR amplification and sequencing of two genetics markers: the nuclear rDNA internal transcribed spacer (ITS) regions and the mitochondrial cytochrome b gene (CYTB). Our results show that MDA is a valuable tool for molecular genetic analysis of powdery mildew fungi that can be used for a number of downstream applications in different fields, such as epidemiology and population genetics or systematics.
Collapse
|
14
|
Dracatos PM, Dumsday JL, Olle RS, Cogan NOI, Dobrowolski MP, Fujimori M, Roderick H, Stewart AV, Smith KF, Forster JW. Development and characterization of EST-SSR markers for the crown rust pathogen of ryegrass (Puccinia coronata f.sp. lolii). Genome 2006; 49:572-83. [PMID: 16936837 DOI: 10.1139/g06-006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The causative organism of crown rust in ryegrasses (Puccinia coronata f.sp. lolii) is an obligate biotroph that causes significant economic losses within the temperate grazing industries of dairy, meat, and wool production. This study reports on the development, transferability, and utility of gene-associated simple sequence repeat (SSR) molecular markers for crown rust. Analysis of 1,100 expressed sequence tag (EST) sequences from a urediniospore-derived cDNA library detected 55 SSR loci. The majority of EST-SSR arrays contained perfect trinucleotide repeats with consistently low repeat numbers, and the motifs (ACC)n and (CAT)n were most commonly represented. DNA extraction from single pustules, in conjunction with multiple displacement amplification, provided the basis for PCR-based screening to evaluate genetic marker performance. An example of the identification of intraspecific genetic diversity was obtained from the analysis of 16 P. coronata isolates originating from the United Kingdom, Australia, New Zealand, and Japan. A subset of 12 robust EST-SSR markers was informative for determination of pathogen diversity within and between these localities. It was also demonstrated that crown rust EST-SSR markers were capable of cross-amplification in closely related fungal taxa (Puccinia spp.) and filamentous fungi within the Ascomycota.
Collapse
Affiliation(s)
- Peter M Dracatos
- Primary Industries Research Victoria, Victorian AgriBiosciences Centre, Australia 1 Park Drive, La Trobe Research and Development Park, Bundoora, Victoria 3083, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ Microbiol 2006; 8:1155-63. [PMID: 16817924 DOI: 10.1111/j.1462-2920.2006.01005.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limitations in obtaining sufficient specimens and difficulties in extracting high quality DNA from environmental samples have impeded understanding of the structure of microbial communities. In this study, multiple displacement amplification (MDA) using phi29 polymerase was applied to overcome these hindrances. Optimization of the reaction conditions for amplification of the bacterial genome and evaluation of the MDA product were performed using cyanobacterium Synechocystis sp. strain PCC6803. An 8-h MDA reaction yielded a sufficient quantity of DNA from an initial amount of 0.4 ng, which is equivalent to approximately 10(5) cells. Uniform amplification of genes randomly selected from the cyanobacterial genome was confirmed by real-time polymerase chain reaction. The metagenome from bacteria associated with scleractinian corals was used for whole-genome amplification using phi29 polymerase to analyse the microbial diversity. Unidentified bacteria with less than 93% identity to the closest 16S rDNA sequences deposited in DNA Data Bank of Japan were predominantly detected from the coral-associated bacterial community before and after the MDA procedures. Sequencing analysis indicated that alpha-Proteobacteria was the dominant group in Pocillopora damicornis. This study demonstrates that MDA techniques are efficient for genome wide investigation to understand the actual microbial diversity in limited bacterial samples.
Collapse
Affiliation(s)
- Hiroko Yokouchi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Lovmar L, Syvänen AC. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 2006; 27:603-14. [PMID: 16786504 DOI: 10.1002/humu.20341] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many situations there may not be sufficient DNA collected from patient or population cohorts to meet the requirements of genome-wide analysis of SNPs, genomic copy number polymorphisms, or acquired copy number alternations. When the amount of available DNA for genotype analysis is limited, high performance whole-genome amplification (WGA) represents a new development in genetic analysis. It is especially useful for analysis of DNA extracted from stored histology slides, tissue samples, buccal swabs, or blood stains collected on filter paper. The multiple displacement amplification (MDA) method, which relies on isothermal amplification using the DNA polymerase of the bacteriophage phi29, is a recently developed technique for high performance WGA. This review addresses new trends in the technical performance of MDA and its applications to genetic analyses. The main challenge of WGA methods is to obtain balanced and faithful replication of all chromosomal regions without the loss of or preferential amplification of any genomic loci or allele. In multiple comparisons to other WGA methods, MDA appears to be most reliable for genotyping, with the most favorable call rates, best genomic coverage, and lowest amplification bias.
Collapse
Affiliation(s)
- Lovisa Lovmar
- Molecular Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
17
|
Gadkar V, Rillig MC. Suitability of genomic DNA synthesized by strand displacement amplification (SDA) for AFLP analysis: genotyping single spores of arbuscular mycorrhizal (AM) fungi. J Microbiol Methods 2005; 63:157-64. [PMID: 15936100 DOI: 10.1016/j.mimet.2005.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 11/30/2022]
Abstract
Limited biological samples of microbial origin often yield insufficient amounts of genomic DNA, making application of standard techniques of genetic analysis, like amplified fragment length polymorphism (AFLP), virtually impossible. The Phi29 DNA polymerase based whole genome amplification (WGA) method has the potential to alleviate this technical bottleneck. In the present work, we have sought to investigate the suitability of genomic DNA synthesized using Phi29 based WGA for AFLP analysis. We first used genomic DNA from Saccharomyces cerevisiae to optimize the protocol for the use of SDA-amplified DNA for AFLP analysis. Based on the optimized protocol we obtained AFLP fingerprints which were indistinguishable from the non-amplified genomic DNA. Finally, AFLP analysis was performed using SDA synthesized genomic DNA from single spores of various species of arbuscular mycorrhizal (AM) fungi. Unique and highly reproducible fingerprints for each species were obtained. The present study introduces the application of WGA-mediated AFLP to AM fungal biology; similarly, our protocol could be useful for other microbial genomes currently not amenable to genetic analysis owing to the paucity of starting template.
Collapse
Affiliation(s)
- Vijay Gadkar
- Microbial Ecology Program, Division of Biological Sciences, 32 Campus Drive #4824, University of Montana, Missoula, MT 59812-0003, USA.
| | | |
Collapse
|
18
|
Pawlowska TE. Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 2005; 251:185-92. [PMID: 16140474 DOI: 10.1016/j.femsle.2005.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/05/2005] [Accepted: 08/06/2005] [Indexed: 11/26/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi (Glomeromycota) colonize roots of the majority of land plants and facilitate their mineral nutrient uptake. Consequently, AM fungi play an important role in terrestrial ecosystems and are becoming a component of sustainable land management practices. The absence of sexual reproductive structures in modern Glomeromycota combined with their long evolutionary history suggest that these fungi may represent an ancient asexual lineage of great potential interest to evolutionary biology. However, many aspects of basic AM fungal biology, including genome structure, within-individual genetic variation, and reproductive mode are poorly understood. These knowledge gaps hinder research on the mechanisms of AM fungal interactions with individual plants and plant communities, and utilization of AM fungi in agricultural practices. I present here the current state of research on the reproduction in AM fungi and indicate what new findings can be expected in the future.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- Department of Plant Pathology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
19
|
Abstract
It is possible to reconstruct near-complete, and possibly complete, genomes of the dominant members of microbial communities from DNA that is extracted directly from the environment. Genome sequences from environmental samples capture the aggregate characteristics of the strain population from which they were derived. Comparison of the sequence data within and among natural populations can reveal the evolutionary processes that lead to genome diversification and speciation. Community genomic datasets can also enable subsequent gene expression and proteomic studies to determine how resources are invested and functions are distributed among community members. Ultimately, genomics can reveal how individual species and strains contribute to the net activity of the community.
Collapse
Affiliation(s)
- Eric E Allen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|