1
|
Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS One 2012; 7:e36643. [PMID: 22574205 PMCID: PMC3344905 DOI: 10.1371/journal.pone.0036643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated.
Collapse
|
2
|
Loh LN, Ward TH. Escherichia coli K1 invasion of human brain microvascular endothelial cells. Methods Enzymol 2012; 506:93-113. [PMID: 22341221 DOI: 10.1016/b978-0-12-391856-7.00030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathogenic Escherichia coli strain E. coli K1 is a primary causative agent of neonatal meningitis. Understanding how these bacteria cross the blood-brain barrier is vital to develop therapeutics. Here, we describe the use of live-cell imaging techniques to study E. coli K1 interactions with cellular markers following infection of human brain microvascular endothelial cells, a model system of the blood-brain barrier. We also discuss optimization of endothelial cell transfection conditions using nonviral transfection technique, bacterial labeling techniques, and in vitro assays to screen for fluorescent bacteria that retain their ability to invade host cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
3
|
Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L. Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011; 13:1793-811. [PMID: 21824247 DOI: 10.1111/j.1462-5822.2011.01662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
4
|
Clark L, Martinez-Argudo I, Humphrey TJ, Jepson MA. GFP plasmid-induced defects in Salmonella invasion depend on plasmid architecture, not protein expression. MICROBIOLOGY-SGM 2009; 155:461-467. [PMID: 19202094 DOI: 10.1099/mic.0.025700-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated the impact of plasmids and GFP expression on invasion of cultured epithelial cells by Salmonella enterica Typhimurium strain SL1344. The invasiveness of SL1344 carrying plasmids derived from pBR322, encoding promoterless GFP or constitutively expressed rpsM-GFP, was compared under optimal growth conditions with that of SL1344(pBR322), unmodified SL1344 and a strain with chromosome-integrated rpsM-GFP. The strain carrying pBR322 exhibited normal invasion, but the presence of modified plasmids impaired invasiveness, and impairment was exacerbated by plasmid-encoded chloramphenicol resistance (CmR). Using a different antibiotic resistance marker, kanamycin (KmR), did not impair invasiveness. Despite the effect of plasmid-encoded CmR, the strain containing chromosomally encoded GFP, also carrying a CmR gene, was as invasive as the wild-type. To investigate the mechanism by which plasmid carriage decreases invasion, we monitored SPI-1 gene expression using prgH promoter activity as an index of SPI-1 activity. An SL1344 strain with a chromosome-integrated prgH::gfp reporter construct exhibited lower GFP expression during exponential phase when carrying plasmids incorporating CmR or gfp, mirroring invasion data. These data provide evidence that suppression of SPI-1 gene expression is a major factor in the loss of invasiveness associated with plasmid carriage. Our findings also indicate that some plasmids, especially those carrying CmR, should be used with caution, as virulence traits and gene expression may be affected by their presence. Integration of reporter proteins into the bacterial chromosome, however, appears to circumvent the adverse effects observed with plasmids.
Collapse
Affiliation(s)
- Leann Clark
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Isabel Martinez-Argudo
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Tom J Humphrey
- Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Faucher SP, Forest C, Béland M, Daigle F. A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology (Reading) 2009; 155:477-488. [DOI: 10.1099/mic.0.022988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovar Typhi causes a human-restricted systemic infection called typhoid fever. We have identified a Typhi genomic region encoding two ORFs, STY1498 and STY1499, that are expressed during infection of human macrophages and organized in an operon. STY1498 corresponds to clyA, which encodes a pore-forming cytolysin, and STY1499 encodes a 27 kDa protein, without any attributed function, which we have named TaiA (Typhi-associated invasin A). In order to evaluate the roles of these genes in Typhi pathogenesis, isogenic Typhi strains harbouring a non-polar mutation of either clyA or taiA were constructed. In macrophages, taiA was involved in increasing phagocytosis, as taiA deletion reduced bacterial uptake, whereas clyA reduced or controlled bacterial growth, as clyA deletion enhanced Typhi survival within macrophages without affecting cytotoxicity. In epithelial cells, deletion of taiA had no effect on invasion, whereas deletion of clyA enhanced the Typhi invasion rate, and reduced cytotoxicity. Overexpression of taiA in Typhi or in Escherichia coli resulted in a higher invasion rate of epithelial cells. We have demonstrated that TaiA is secreted independently of both the Salmonella pathogenicity island (SPI)-1 and the SPI-2 type three secretion systems. We have shown that this operon is regulated by the virulence-associated regulator PhoP. Moreover, our results revealed that products of this operon might be involved in promoting the use of macrophages as a sheltered reservoir for Typhi and allowing long-term persistence inside the host.
Collapse
Affiliation(s)
- Sébastien P. Faucher
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Chantal Forest
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Maxime Béland
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Aminoglycosides affect intracellular Salmonella enterica serovars typhimurium and virchow. Antimicrob Agents Chemother 2008; 52:920-6. [PMID: 18172002 DOI: 10.1128/aac.00382-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high antibacterial activity and selectivity of aminoglycosides and their low activity against intracellular bacteria associated with eukaryotic cells make them the antibiotics of choice for the elimination of extracellular bacteria during intracellular studies. Given the evidence that aminoglycosides can penetrate the eukaryotic cell membrane, the goal of this study was to examine the influence of aminoglycosides on macrophage-associated Salmonella. Herein, we show that gentamicin, kanamycin, and tobramycin at concentrations between 15 to 150 microg ml(-1) do not kill intracellular Salmonella but have other effects on the bacterial physiology. By using Salmonella enterica serovars Typhimurium and Virchow harboring luciferase reporter plasmid, we observed that the light produced by intracellular Salmonella declined immediately upon exposure to aminoglycosides, indicating that the bacteria were under stress. The extent of this effect was dependent on the macrophage host, on the identity of the aminoglycoside and its concentration, on the exposure time, and on the Salmonella serovar. Salmonella associated with Nramp1-negative macrophages, in which the phagosomal pH is higher, were more susceptible to aminoglycosides than Salmonella associated with Nramp1-expressing macrophages. These results verify that aminoglycosides affect intracellular bacteria and that the extent of this effect is dependent on the acidity level within the phagosome, suggesting that for the study of intracellular bacteria, the aminoglycoside concentration should be limited to two to five times the MIC for the bacterial strain studied. This precaution should guarantee the complete execution of extracellular bacteria with minimal effects on the intracellular bacteria and the host cells.
Collapse
|
7
|
Klumpp J, Fuchs TM. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. MICROBIOLOGY-SGM 2007; 153:1207-1220. [PMID: 17379730 DOI: 10.1099/mic.0.2006/004747-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) survives and proliferates within macrophage cells. A mutant library of strain ATCC 14028 based on gene disruption by homologous recombination was screened in order to identify genes that are required for wild-type-like intracellular replication. Randomly generated chromosomal fragments from the genome of S. typhimurium were cloned into a temperature-sensitive vector, and approximately 8000 individual mutant clones were obtained by insertional-duplication mutagenesis (IDM) upon selection at non-permissive temperature. Large-scale screening for replication defects in mouse macrophages, but not during growth in rich or minimal medium, revealed a set of attenuated mutants that were further characterized by PCR amplification and sequencing of the mutagenic fragments. Following analysis of a Salmonella genome map with the annotated positions of vector insertions, an accumulation of 33 attenuating insertions within genes of ten non-collinear regions was found. Insertions in virK, gipA and five SPI-2 genes as well as seven non-polar deletions validated the screen. No invasion deficiencies of the mutants were observed. The cob-cbi-pdu cluster containing the genes for cobalamin synthesis and 1,2-propanediol degradation was shown to be required for Salmonella replication within macrophages. These data gave rise to a model of eukaryotic glycoconjugates and phospholipids as alternative carbon, nitrogen and energy sources for intracellularly replicating bacteria. The contribution of as yet unknown components of SPI-6 and the Gifsy-1 and Gifsy-2 prophage islands to intracellular replication is reported, as well as the fivefold reduced intracellular growth rate of a mutant with a deletion of STM1677, which probably encodes a LysR-like transcriptional regulator. The intracellular replication rate of three double mutants, each lacking two gene products of the cob-cbi-pdu cluster or the Gifsy-1 prophage, was shown to be lower than that of the respective single mutants, suggesting that additive effects of subtle intracellular advantages contribute to Salmonella fitness in vivo.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food Science and Nutrition, ETH Zürich, Schmelzbergstr. 7, 8092 Zürich, Switzerland
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
8
|
Knodler LA, Bestor A, Ma C, Hansen-Wester I, Hensel M, Vallance BA, Steele-Mortimer O. Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. Infect Immun 2005; 73:7027-31. [PMID: 16177386 PMCID: PMC1230934 DOI: 10.1128/iai.73.10.7027-7031.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid vectors and fluorescent protein reporter systems are commonly used in the study of bacterial pathogenesis. Here we show that they can impair the ability of Salmonella enterica serovar Typhimurium to productively infect either cultured mammalian cells or mice. This has significant implications for studies that rely on these systems.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840,USA
| | | | | | | | | | | | | |
Collapse
|