1
|
Hamed SM, El-Gaml NM, Eissa ST. Integrated biofertilization using yeast with cyanobacteria on growth and productivity of wheat. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
The heavy use of conventional mineral fertilization considerably increased wheat growth and yield components. However, the excessive nitrogen fertilization accounts for large expenses on farmers’ budget and has negative environmental drawbacks to soil and water ecosystems. Recently, establishing wheat plants associations with a variety of N2-fixing cyanobacteria and/or growth promoting microorganisms in farming systems as nutrients source is seen as ecofriendly and economically feasible solution.
Results
In this work, the influence of different nitrogen (N) levels (100% N, 75% N, and 50% N as urea) and cyanobacteria (Cy) and/or yeast (Y) inoculation each alone or both in combination with different nitrogen levels were assessed on two different wheat (Triticumae stivum L.) genotypes (Sids-14 and Giza-171) through field experiments over two consecutive seasons (2019/2020 and 2020/2021). Although, the full recommended dose (FRD) (100% N) showed the highest chlorophyll (Chl) a, b content during tillering stage, grains quality (NPK-uptake, protein%), and wheat yield components in both genotypes. The integrated inoculation of cyanobacteria and yeast with 50% N, 75% N-fertilization enhanced wheat growth characteristic (Chl a,b) and upgraded soil microbial community (nitrogenase activity and CO2 evolution) in Sids-14 and Giza-171. Cy combined with Y and partial N-fertilization levels enhanced NPK-uptake Kg/fed and protein% in wheat grains in the two wheat genotypes. Moreover, this combination recorded a wheat yield components (plant height, number of spikes/m2, number of grains/spike, 1000 grains wt (gm) and grains yield (tonne/fed) insignificantly different from those obtained by FRD in wheat cultivation.
Conclusion
The integrated application of cyanobacteria with yeast and 50% N or 75% N-fertilization improved soil fertility index and promoted NPK- uptake, protein% and wheat yield components, showing comparable values to conventional chemical fertilization. Cyanobacteria combined with yeast inoculation had socio-economic benefits as it can save about 25–50% of the required mineral nitrogen fertilizers for wheat crop production.
Collapse
|
2
|
Co-cultivation Approach to Decipher the Influence of Nitrogen-Fixing Cyanobacterium on Growth and N Uptake in Rice Crop. Curr Microbiol 2022; 79:53. [PMID: 34982252 DOI: 10.1007/s00284-021-02732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
Abstract
The present study was performed to evaluate the efficacy of selected potential nitrogen-fixing cyanobacterial strain (Anabaena sp.), isolated from rhizospheric soil of rice plants on growth, pigments, N uptake, root architecture, and image-based phenotypic traits of rice crop using co-cultivation approach under controlled sand culture conditions. We studied the beneficial interaction of cyanobacterium to rice using sensor image-based Phenomics approach as well as conventional methods. Co-cultivation experiment revealed that inoculation with Anabaena sp. significantly improved plant growth, chlorophyll, leaf area, % nitrogen, and protein of rice by ~ 70%, ~ 22%, ~ 60%, and ~ 25% under 100% nitrogen input in comparison with un-inoculated control. Further, comparative evaluation revealed superior performance of Anabaena sp. at 100% and 75% N followed by 50% N input improving below-ground parameters as well as phenotypic traits as compared to control treatment. Hence, inoculation performed better with inorganic nitrogen input for overall growth of rice crop. Therefore, cyanobacterial strain can be used as an efficient bio-inoculant for sustainable rice production under integrated nutrient management.
Collapse
|
3
|
The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. ENERGIES 2021. [DOI: 10.3390/en14175262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of foliar application of Cyanobacteria and Chlorella sp. monocultures on physiological activity, element composition, development and biomass weight of basket willow (Salix viminalis L.) and the possibility to prepare biofuel from it in the fortification process was studied. Triple foliar plant spraying with non-sonicated monocultures of Cyanobacteria (Anabaena sp. PCC 7120, Microcystis aeruginosa MKR 0105) and Chlorella sp. exhibited a considerably progressive impact on metabolic activity and development of plants. This biofertilization increased cytomembrane impermeability, the amount of chlorophyll in plants, photosynthesis productivity and transpiration, as well as degree of stomatal opening associated with a decreased concentration of intercellular CO2, in comparison to control (treatments with water, Bio-Algeen S90 or with environmental sample). The applied strains markedly increased the element content (N, P, K) in shoots and the productivity of crucial growth enzymes: alkaline or acid phosphorylase, total dehydrogenases, RNase and nitrate reductase. Treatments did not affect energy properties of the burnt plants. These physiological events were associated with the improved growth of willow plants, namely height, length and amount of all shoots and their freshly harvested dry mass, which were increased by over 25% compared to the controls. The effectiveness of these treatments depended on applied monoculture. The plant spraying with Microcystis aeruginosa MKR 0105 was a little more effective than treatment with Chlorella sp. and Anabaena sp. or the environmental sample. The research demonstrate that the studied Cyanobacteria and Chlorella sp. monocultures have prospective and useful potential in production of Salix viminalis L., which is the basic energy plant around the word. In this work, a special batch reactor was used to produce torrefaction material in an inert atmosphere: nitrogen, thermogravimetric analysis and DTA analysis, like Fourier-transform infrared spectroscopy. The combustion process of Salix viminalis L. with TG-MS analysis was conducted as well as study on a willow torrefaction process, obtaining 30% mass reduction with energy loss close to 10%. Comparing our research results to other types of biomasses, the isothermal temperature of 245 °C during thermo-chemical conversion of willow for the carbonized solid biofuel production from Salix viminalis L. biomass fertilized with Cyanobacteria and Chlorella sp. is relatively low. At the end, a SEM-EDS analysis of ash from torrefied Salix viminalis L. after carbonization process was conducted.
Collapse
|
4
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 2019; 39:981-998. [PMID: 31455102 DOI: 10.1080/07388551.2019.1654972] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The soil microbiota plays a major role in maintaining the nutrient balance, carbon sink, and soil health. Numerous studies reported on the function of microbiota such as plant growth-promoting bacteria and fungi in soil. Although microalgae and cyanobacteria are ubiquitous in soil, very less attention has been paid on the potential of these microorganisms. The indiscriminate use of various chemicals to enhance agricultural productivity led to serious consequences like structure instability, accumulation of toxic contaminants, etc., leading to an ecological imbalance between soil, plant, and microbiota. However, the significant role of microalgae and cyanobacteria in crop productivity and other potential options has been so far undermined. The intent of the present critical review is to highlight the significance of this unique group of microorganisms in terms of maintaining soil fertility and soil health. Beneficial soil ecological applications of these two groups in enhancing plant growth, establishing interrelationships among other microbes, and detoxifying chemical agents such as insecticides, herbicides, etc. through mutualistic cooperation by synthesizing enzymes and phytohormones are presented. Since recombinant technology involving genomic integration favors the development of useful traits in microalgae and cyanobacteria for their potential application in improvement of soil fertility and health, the merits and demerits of various such advanced methodologies associated in harnessing the biotechnological potential of these photosynthetic microorganisms for sustainable agriculture were also discussed.
Collapse
Affiliation(s)
- Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| | | | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| |
Collapse
|
6
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
7
|
Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 2015; 171:78-89. [PMID: 25644956 DOI: 10.1016/j.micres.2014.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/26/2014] [Indexed: 12/31/2022]
Abstract
Rice plants are selective with their associations with bacteria that are beneficial for growth, nutrient uptake, exhibit induced resistance or antagonism towards pathogens. Cyanobacteria as bioinoculants are known to promote the growth and health of rice plants. The present investigation was aimed at understanding whether and how cyanobacterial (Calothrix elenkinii) inoculation influenced the rice plant growth and the culturable bacterial populations and identifying the dominant culturable "microbiome" members. The plant tissue extracts were used to enumerate populations of the culturable microbiome members using selected enrichment media with different nutrient levels. About 10-fold increases in population densities of culturable microbiome members in different media were recorded, with some isolates having metabolic potential for nitrogen fixation and phosphorus solubilization. Fatty acid methyl ester (FAME) analysis and 16S rRNA sequencing of selected microbial morphotypes suggested the predominance of the members of Bacillaceae. Significant increases in plant growth attributes, nitrogenase activity and indole acetic acid production, and activities of hydrolytic and defense enzymes were recorded in the Calothrix inoculated plants. The PCR-based analysis and scanning electron microscopic (SEM) observations confirmed the presence of inoculated cyanobacterium inside the plant tissues. This investigation illustrated that cyanobacterial inoculation can play significant roles in improving growth and metabolism of rice directly and interact with the beneficial members from the endophytic microbiome of rice seedlings synergistically.
Collapse
Affiliation(s)
- Himani Priya
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | | | - Ngangom Bidyarani
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Santosh Babu
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Nirmal Renuka
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| |
Collapse
|
8
|
Bidyarani N, Prasanna R, Chawla G, Babu S, Singh R. Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol 2014; 55:407-19. [PMID: 25515189 DOI: 10.1002/jobm.201400591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/02/2014] [Indexed: 11/06/2022]
Abstract
Cyanobacteria-rice plant interactions were analyzed using a hydroponics experiment. The activity of plant defense and pathogenesis-related enzymes, scanning electron microscopy, growth, nitrogen fixation (measured as ARA), and DNA fingerprinting assays proved useful in illustrating the nature of associations of cyanobacteria with rice plants. Microscopic analyses revealed the presence of short filaments and coiled masses of filaments of cyanobacteria near the epidermis and cortex of roots and shoot tissues. Among the six cyanobacterial strains employed, Calothrix sp. (RPC1), Anabaena laxa (RPAN8), and Anabaena azollae (C16) were the best performing strains, in terms of colonization in roots and stem. These strains also enhanced nitrogen fixation and stimulated the activity of plant defense/cell wall-degrading enzymes. A significantly high correlation was also recorded between the elicited plant enzymes, growth, and ARA. DNA fingerprinting using highly iterated palindromic sequences (HIP-TG) further helped in proving the establishment of inoculated organisms in the roots/shoots of rice plants. This study illustrated that the colonization of cyanobacteria in the plant tissues is facilitated by increased elicitation of plant enzymes, leading to improved plant growth, nutrient mobilization, and enhanced plant fitness. Such strains can be promising candidates for developing "cyanobacteria colonized-nitrogen-fixing rice plants" in the future.
Collapse
Affiliation(s)
- Ngangom Bidyarani
- Division of Microbiology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | | |
Collapse
|
9
|
Singh S. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 2014; 117:1221-44. [DOI: 10.1111/jam.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Singh
- Center for Biotechnology; Department of Biological Sciences; Birla Institute of Technology and Science; Pilani India
| |
Collapse
|
10
|
Aryal UK, Callister SJ, McMahon BH, McCue LA, Brown J, Stöckel J, Liberton M, Mishra S, Zhang X, Nicora CD, Angel TE, Koppenaal DW, Smith RD, Pakrasi HB, Sherman LA. Proteomic Profiles of Five Strains of Oxygenic Photosynthetic Cyanobacteria of the Genus Cyanothece. J Proteome Res 2014; 13:3262-76. [DOI: 10.1021/pr5000889] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uma K. Aryal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Stephen J. Callister
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lee-Ann McCue
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joseph Brown
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jana Stöckel
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
- MOgene Green Chemicals LC, St. Louis, Missouri 63132, United States
| | - Michelle Liberton
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Sujata Mishra
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaohui Zhang
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas E. Angel
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Kinemed, Inc., Horton Street, Emeryville, California 94608, United States
| | - David W. Koppenaal
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Himadri B. Pakrasi
- Department
of Biology, Washington University, St. Louis, Missouri 63130, United States
| | - Louis A. Sherman
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Hussain A, Hamayun M, Shah ST. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 2013; 67:624-30. [PMID: 23794014 DOI: 10.1007/s00284-013-0408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/19/2013] [Indexed: 01/07/2023]
Abstract
Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science, Abdul Wali Khan University Mardan, Shankar Campus, Mardan, Pakistan,
| | | | | |
Collapse
|
12
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—Prospects and challenges. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Duggan PS, Thiel T, Adams DG. Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 2012. [DOI: 10.1007/s13199-012-0216-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Adams DG, Duggan PS. Signalling in Cyanobacteria–Plant Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Paschke M, Horiuchi J, Vivanco J, Perry L, Alford É. Chemical Signals in the Rhizosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420005585.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
17
|
Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol (Praha) 2009; 54:43-51. [DOI: 10.1007/s12223-009-0007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/07/2008] [Indexed: 11/30/2022]
|
18
|
Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 2009; 49:89-97. [PMID: 23100756 PMCID: PMC3450053 DOI: 10.1007/s12088-009-0009-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 02/21/2008] [Indexed: 10/21/2022] Open
Abstract
This investigation was undertaken to characterize the abundance and genera-wise diversity of cyanobacteria in the rice rhizosphere and nitrogen-fixing ability of the isolated strains. The cyanobacterial strains belonging to the genera Nostoc and Anabaena comprised 80% of the rhizosphere isolates, which were also efficient in enhancing the germination and growth of wheat seeds and exhibited significantly high protein accumulation and IAA production. Distinct profiles for the cyanobacterial strains were obtained on amplification with extended Hip 1 primer - HipTG, indicative of the diversity among these strains. Our investigation helped in identifying promising cyanobacterial isolates from the rhizosphere of rice, which can be utilized in developing efficient plant growth promoting cyanobacterial inoculants.
Collapse
Affiliation(s)
- Radha Prasanna
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Pranita Jaiswal
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Saswati Nayak
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | - Anjuli Sood
- Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute (IARI), New Delhi, 110 012 India
| | | |
Collapse
|
19
|
Usher KM, Bergman B, Raven JA. Exploring Cyanobacterial Mutualisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095641] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kayley M. Usher
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, 6009 Australia;
| | - Birgitta Bergman
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - John A. Raven
- Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom;
| |
Collapse
|
20
|
Duggan PS, Gottardello P, Adams DG. Molecular analysis of genes in Nostoc punctiforme involved in pilus biogenesis and plant infection. J Bacteriol 2007; 189:4547-51. [PMID: 17416648 PMCID: PMC1913353 DOI: 10.1128/jb.01927-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormogonia are the infective agents in many cyanobacterium-plant symbioses. Pilus-like appendages are expressed on the hormogonium surface, and mutations in pil-like genes altered surface piliation and reduced symbiotic competency. This is the first molecular evidence that pilus biogenesis in a filamentous cyanobacterium requires a type IV pilus system.
Collapse
Affiliation(s)
- Paula S Duggan
- Institute of Integrative and Comparative Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | |
Collapse
|