1
|
Deng MR, Chik SY, Li Y, Zhu H. An in-cluster Sfp-type phosphopantetheinyl transferase instead of the holo-ACP synthase activates the granaticin biosynthesis under natural physiological conditions. Front Chem 2022; 10:1112362. [PMID: 36618868 PMCID: PMC9813960 DOI: 10.3389/fchem.2022.1112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial aromatic polyketides are mainly biosynthesized by type II polyketide synthases (PKSs). The PKSs cannot be functional unless their acyl carrier proteins (ACPs) are phosphopantetheinylated by phosphopantetheinyl transferases (PPTases). Gra-ORF32 was identified as an in-cluster PPTase dedicated for granaticin biosynthesis in Streptomyces vietnamensis and the Arg- and Pro-rich N terminus was found to be crucial for catalytic activity. Overexpression of the encoding genes of the holo-ACP synthases of fatty acid synthases (FAS ACPSs) of both E. coli and S. vietnamensis could efficiently activate the production of granaticins in the Δgra-orf32 mutant, suggesting the ACP of granaticin (graACP) is an efficient substrate for FAS ACPSs. However, Gra-ORF32, the cognate PPTase of the graACP, could not compensate the conditional deficiency of ACPS in E. coli HT253, indicating that it has evolved to be functionally segregated from fatty acid biosynthesis. Nine out of eleven endogenous and all the tested exogenous non-cognate PPTases could activate the production of granaticins to varied extents when overexpressed in the Δgra-orf32 mutant, indicating that ACPs of type II PKSs could also be widely recognized as effective substrates by the Sfp-type PPTases. The exogenous PPTases of type II PKSs activated the production of granaticins with much higher efficiency, suggesting that the phylogenetically distant in-cluster PPTases of type II PKSs could share substrate preferences for the ACPs of type II PKSs. A significantly elevated production of granaticins was observed when the mutant Δgra-orf32 was cultivated on ISP2 plates, which was a consequence of crosstalk between the granaticin pathway and a kinamycin-like pathway as revealed by transcriptome analysis and pathway inactivations. Although the host FAS ACPS could efficiently activate the production of granaticins when overexpressed, only Gra-ORF32 activated the efficient production of granaticins under natural physiological conditions, indicating that the activity of the host FAS ACPS was strictly regulated, possibly by binding the FAS holo-ACP product with high affinity. Our findings would contribute to a more comprehensive understanding of how the ACPs of type II PKSs are activated and facilitate the future functional reconstitutions of type II PKSs in E. coli.
Collapse
Affiliation(s)
- Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
3
|
Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS. Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Ind Microbiol Biotechnol 2017; 44:785-797. [PMID: 28185098 DOI: 10.1007/s10295-017-1913-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.
Collapse
Affiliation(s)
- Arpan A Bandyopadhyay
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Anurag Khetan
- Biological Process Development, Bristol Myers Squibb, 521 NJ-173, Bloomsbury, NJ, 08804, USA
| | - Li-Hong Malmberg
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | | | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
4
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
5
|
Cai X, Teta R, Kohlhaas C, Crüsemann M, Ueoka R, Mangoni A, Freeman M, Piel J. Manipulation of Regulatory Genes Reveals Complexity and Fidelity in Hormaomycin Biosynthesis. ACTA ACUST UNITED AC 2013; 20:839-46. [DOI: 10.1016/j.chembiol.2013.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 12/28/2022]
|
6
|
Identification of functionally clustered nystatin-like biosynthetic genes in a rare actinomycetes, Pseudonocardia autotrophica. J Ind Microbiol Biotechnol 2009; 36:1425-34. [PMID: 19697072 DOI: 10.1007/s10295-009-0629-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/27/2009] [Indexed: 02/07/2023]
Abstract
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.
Collapse
|
7
|
Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster. J Ind Microbiol Biotechnol 2009; 36:1257-65. [PMID: 19557446 DOI: 10.1007/s10295-009-0605-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.
Collapse
|
8
|
Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor. J Bacteriol 2008; 190:6903-8. [PMID: 18689472 DOI: 10.1128/jb.00865-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.
Collapse
|
9
|
Olano C, Lombó F, Méndez C, Salas JA. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 2008; 10:281-92. [PMID: 18674632 DOI: 10.1016/j.ymben.2008.07.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
Abstract
Production of secondary metabolites is a process influenced by several physico-chemical factors including nutrient supply, oxygenation, temperature and pH. These factors have been traditionally controlled and optimized in industrial fermentations in order to enhance metabolite production. In addition, traditional mutagenesis programs have been used by the pharmaceutical industry for strain and production yield improvement. In the last years, the development of recombinant DNA technology has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathways. These efforts are usually focused in redirecting precursor metabolic fluxes, deregulation of biosynthetic pathways and overexpression of specific enzymes involved in metabolic bottlenecks. In addition, efforts have been made for the heterologous expression of biosynthetic gene clusters in other organisms, looking not only for an increase of production levels but also to speed the process by using rapidly growing and easy to manipulate organisms compared to the producing organism. In this review, we will focus on these genetic approaches as applied to bioactive secondary metabolites produced by actinomycetes.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
10
|
Demain AL, Adrio JL. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 65:251-289. [PMID: 18084918 DOI: 10.1007/978-3-7643-8117-2_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbes have been good to us. They have given us thousands of valuable products with novel structures and activities. In nature, they only produce tiny amounts of these secondary metabolic products as a matter of survival. Thus, these metabolites are not overproduced in nature, but they must be overproduced in the pharmaceutical industry. Genetic manipulations are used in industry to obtain strains that produce hundreds or thousands of times more than that produced by the originally isolated strain. These strain improvement programs traditionally employ mutagenesis followed by screening or selection; this is known as 'brute-force' technology. Today, they are supplemented by modern strategic technologies developed via advances in molecular biology, recombinant DNA technology, and genetics. The progress in strain improvement has increased fermentation productivity and decreased costs tremendously. These genetic programs also serve other goals such as the elimination of undesirable products or analogs, discovery of new antibiotics, and deciphering of biosynthetic pathways.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (RISE), HS-330, Drew University, Madison, NJ 07940 USA.
| | | |
Collapse
|
11
|
Van Lanen SG, Shen B. Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 2006; 9:252-60. [PMID: 16651020 DOI: 10.1016/j.mib.2006.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The quest for the discovery of novel natural products has entered a new chapter with the enormous wealth of genetic data that is now available. This information has been exploited by using whole-genome sequence mining to uncover cryptic pathways, or biosynthetic pathways for previously undetected metabolites. Alternatively, using known paradigms for secondary metabolite biosynthesis, genetic information has been 'fished out' of DNA libraries resulting in the discovery of new natural products and isolation of gene clusters for known metabolites. Novel natural products have been discovered by expressing genetic data from uncultured organisms or difficult-to-manipulate strains in heterologous hosts. Furthermore, improvements in heterologous expression have not only helped to identify gene clusters but have also made it easier to manipulate these genes in order to generate new compounds. Finally, and perhaps the most crucial aspect of the efficient and prosperous use of the abundance of genetic information, novel enzyme chemistry continues to be discovered, which has aided our understanding of how natural products are biosynthesized de novo, and enabled us to rework the current paradigms for natural product biosynthesis.
Collapse
Affiliation(s)
- Steven G Van Lanen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | |
Collapse
|