1
|
Ensinck D, Gerhardt ECM, Rollan L, Huergo LF, Gramajo H, Diacovich L. The PII protein interacts with the Amt ammonium transport and modulates nitrate/nitrite assimilation in mycobacteria. Front Microbiol 2024; 15:1366111. [PMID: 38591044 PMCID: PMC11001197 DOI: 10.3389/fmicb.2024.1366111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.
Collapse
Affiliation(s)
- Delfina Ensinck
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Edileusa C. M. Gerhardt
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Lara Rollan
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano F. Huergo
- Setor Litoral, Federal University of Paraná, Universidade Federal do Paraná (UFPR), Matinhos, Paraná, Brazil
- Graduated Program in Sciences-Biochemistry, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
2
|
Fatty acid biosynthesis is enhanced in Escherichia coli strains with deletion in genes encoding the PII signaling proteins. Arch Microbiol 2018; 201:209-214. [PMID: 30506165 DOI: 10.1007/s00203-018-1603-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
The committed and rate-limiting step in fatty acid biosynthesis is catalyzed by acetyl-CoA carboxylase (ACC). In previous studies we showed that ACC activity is inhibited through interactions with the PII signaling proteins in vitro. Here we provide in vivo support for that model; we noted that PII proteins are able to reduce malonyl-CoA levels in vivo in Escherichia coli. Furthermore, we show that fatty acid biosynthesis is strongly enhanced in E. coli strains carrying deletions in PII coding genes. Given that PII proteins act as conserved negative regulators of ACC in Bacteria, our findings may be explored to engineer other prokaryotes to improve fatty acid yields, thereby turning microbial biofuel production economically competitive in the future.
Collapse
|
3
|
Gerhardt EC, Rodrigues TE, Müller-Santos M, Pedrosa FO, Souza EM, Forchhammer K, Huergo LF. The Bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase. Mol Microbiol 2015; 95:1025-35. [DOI: 10.1111/mmi.12912] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Edileusa C.M. Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen; Auf der Morgenstelle 28 Tübingen 72076 Germany
| | - Thiago E. Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Marcelo Müller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Fabio O. Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Emanuel M. Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen; Auf der Morgenstelle 28 Tübingen 72076 Germany
| | - Luciano F. Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| |
Collapse
|
4
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
5
|
The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 2012; 195:279-86. [PMID: 23144248 DOI: 10.1128/jb.01517-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fe protein (dinitrogenase reductase) activity is reversibly inactivated by dinitrogenase reductase ADP-ribosyltransferase (DraT) in response to an increase in the ammonium concentration or a decrease in cellular energy in Azospirillum brasilense, Rhodospirillum rubrum, and Rhodobacter capsulatus. The ADP-ribosyl is removed by the dinitrogenase reductase-activating glycohydrolase (DraG), promoting Fe protein reactivation. The signaling pathway leading to DraT activation by ammonium is still not completely understood, but the available evidence shows the involvement of direct interaction between the enzyme and the nitrogen-signaling P(II) proteins. In A. brasilense, two P(II) proteins, GlnB and GlnZ, were identified. We used Fe protein from Azotobacter vinelandii as the substrate to assess the activity of A. brasilense DraT in vitro complexed or not with P(II) proteins. Under our conditions, GlnB was necessary for DraT activity in the presence of Mg-ADP. The P(II) effector 2-oxoglutarate, in the presence of Mg-ATP, inhibited DraT-GlnB activity, possibly by inducing complex dissociation. DraT was also activated by GlnZ and by both uridylylated P(II) proteins, but not by a GlnB variant carrying a partial deletion of the T loop. Kinetics studies revealed that the A. brasilense DraT-GlnB complex was at least 18-fold more efficient than DraT purified from R. rubrum, but with a similar K(m) value for NAD(+). Our results showed that ADP-ribosylation of the Fe protein does not affect the electronic state of its metal cluster and prevents association between the Fe and MoFe proteins, thus inhibiting electron transfer.
Collapse
|
6
|
Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. MICROBIOLOGY-SGM 2012; 158:176-190. [PMID: 22210804 DOI: 10.1099/mic.0.049783-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Collapse
Affiliation(s)
- Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, UK
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| |
Collapse
|
7
|
Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH4+-regulation. Biochimie 2012; 94:1041-7. [DOI: 10.1016/j.biochi.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
|
8
|
Moure VR, Razzera G, Araújo LM, Oliveira MAS, Gerhardt ECM, Müller-Santos M, Almeida F, Pedrosa FO, Valente AP, Souza EM, Huergo LF. Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Protein Expr Purif 2011; 81:83-88. [PMID: 21963770 DOI: 10.1016/j.pep.2011.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 09/14/2011] [Accepted: 09/18/2011] [Indexed: 02/05/2023]
Abstract
The P(II) proteins comprise a family of widely distributed signal transduction proteins that integrate the signals of cellular nitrogen, carbon and energy status, and then regulate, by protein-protein interaction, the activity of a variety of target proteins including enzymes, transcriptional regulators and membrane transporters. We have previously shown that the P(II) proteins from Azospirillum brasilense, GlnB and GlnZ, do not alter their migration behavior under native gel electrophoresis following incubated for a few minutes at 95°C. This data suggested that P(II) proteins were either resistant to high temperatures and/or that they could return to their native state after having been unfolded by heat. Here we used (1)H NMR to show that the A. brasilense GlnB is stable up to 70°C. The melting temperature (Tm) of GlnB was determined to be 84°C using the fluorescent dye Sypro-Orange. P(II) proteins from other Proteobacteria also showed a high Tm. We exploited the thermo stability of P(II) by introducing a thermal treatment step in the P(II) purification protocol, this step significantly improved the homogeneity of A. brasilense GlnB and GlnZ, Herbaspirillum seropedicae GlnB and GlnK, and of Escherichia coli GlnK. Only a single chromatography step was necessary to obtain homogeneities higher than 95%. NMR(1) and in vitro uridylylation analysis showed that A. brasilense GlnB purified using the thermal treatment maintained its folding and activity. The purification protocol described here can facilitate the study of P(II) protein family members.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Guilherme Razzera
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Luíza M Araújo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marco A S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Edileusa C M Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Marcelo Müller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Fabio Almeida
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Ana P Valente
- Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, Brazil
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba-PR 81531-990, Brazil.
| |
Collapse
|
9
|
Oetjen J, Reinhold-Hurek B. Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72. J Bacteriol 2009; 191:3726-35. [PMID: 19346301 PMCID: PMC2681912 DOI: 10.1128/jb.01720-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/29/2009] [Indexed: 11/20/2022] Open
Abstract
DraT/DraG-mediated posttranslational regulation of the nitrogenase Fe protein by ADP-ribosylation has been described for a few diazotrophic bacteria belonging to the class Alphaproteobacteria. Here we present for the first time the DraT/DraG system of a betaproteobacterium, Azoarcus sp. strain BH72, a diazotrophic grass endophyte. Its genome harbors one draT ortholog and two physically unlinked genes coding for ADP-ribosylhydrolases. Northern blot analysis revealed cotranscription of draT with two genes encoding hypothetical proteins. Furthermore, draT and draG2 were expressed under all studied conditions, whereas draG1 expression was nitrogen regulated. By using Western blot analysis of deletion mutants and nitrogenase assays in vivo, we demonstrated that DraT is required for the nitrogenase Fe protein modification but not for the physiological inactivation of nitrogenase activity. A second mechanism responsible for nitrogenase inactivation must operate in this bacterium, which is independent of DraT. Fe protein demodification was dependent mainly on DraG1, corroborating the assumption from phylogenetic analysis that DraG2 might be mostly involved in processes other than the posttranslational regulation of nitrogenase. Nitrogenase in vivo reactivation was impaired in a draG1 mutant and a mutant lacking both draG alleles after anaerobiosis shifts and subsequent adjustment to microaerobic conditions, suggesting that modified dinitrogenase reductase was inactive. Our results demonstrate that the DraT/DraG system, despite some differences, is functionally conserved in diazotrophic proteobacteria.
Collapse
Affiliation(s)
- Janina Oetjen
- General Microbiology, Faculty of Biology and Chemistry, University Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | | |
Collapse
|
10
|
Huergo LF, Merrick M, Monteiro RA, Chubatsu LS, Steffens MBR, Pedrosa FO, Souza EM. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense. J Biol Chem 2009; 284:6674-82. [PMID: 19131333 DOI: 10.1074/jbc.m807378200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the nitrogenase enzyme in the diazotroph Azospirillum brasilense is reversibly inactivated by ammonium through ADP-ribosylation of the nitrogenase NifH subunit. This process is catalyzed by DraT and is reversed by DraG, and the activities of both enzymes are regulated according to the levels of ammonium through direct interactions with the P(II) proteins GlnB and GlnZ. We have previously shown that DraG interacts with GlnZ both in vivo and in vitro and that DraT interacts with GlnB in vivo. We have now characterized the influence of P(II) uridylylation status and the P(II) effectors (ATP, ADP, and 2-oxoglutarate) on the in vitro formation of DraT-GlnB and DraG-GlnZ complexes. We observed that both interactions are maximized when P(II) proteins are de-uridylylated and when ADP is present. The DraT-GlnB complex formed in vivo was purified to homogeneity in the presence of ADP. The stoichiometry of the DraT-GlnB complex was determined by three independent approaches, all of which indicated a 1:1 stoichiometry (DraT monomer:GlnB trimer). Our results suggest that the intracellular fluctuation of the P(II) ligands ATP, ADP, and 2-oxoglutarate play a key role in the post-translational regulation of nitrogenase activity.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba-PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
11
|
Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM, Souza EM. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 2007; 66:1523-35. [PMID: 18028310 DOI: 10.1111/j.1365-2958.2007.06016.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ammonium movement across biological membranes is facilitated by a class of ubiquitous channel proteins from the Amt/Rh family. Amt proteins have also been implicated in cellular responses to ammonium availability in many organisms. Ammonium sensing by Amt in bacteria is mediated by complex formation with cytosolic proteins of the P(II) family. In this study we have characterized in vitro complex formation between the AmtB and P(II) proteins (GlnB and GlnZ) from the diazotrophic plant-associative bacterium Azospirillum brasilense. AmtB-P(II) complex formation only occurred in the presence of adenine nucleotides and was sensitive to 2-oxoglutarate when Mg(2+) and ATP were present, but not when ATP was substituted by ADP. We have also shown in vitro complex formation between GlnZ and the nitrogenase regulatory enzyme DraG, which was stimulated by ADP. The stoichiometry of this complex was 1:1 (DraG monomer : GlnZ trimer). We have previously reported that in vivo high levels of extracellular ammonium cause DraG to be sequestered to the cell membrane in an AmtB and GlnZ-dependent manner. We now report the reconstitution of a ternary complex involving AmtB, GlnZ and DraG in vitro. Sequestration of a regulatory protein by the membrane-bound AmtB-P(II) complex defines a new regulatory role for Amt proteins in Prokaryotes.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Srivastava A, Tripathi AK. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7. Curr Microbiol 2006; 53:317-23. [PMID: 16972125 DOI: 10.1007/s00284-006-0058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/19/2006] [Indexed: 11/26/2022]
Abstract
Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.
Collapse
Affiliation(s)
- A Srivastava
- Laboratary of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
13
|
Huergo LF, Chubatsu LS, Souza EM, Pedrosa FO, Steffens MBR, Merrick M. Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Lett 2006; 580:5232-6. [PMID: 16963029 DOI: 10.1016/j.febslet.2006.08.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/17/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
In Azospirillum brasilense ADP-ribosylation of dinitrogenase reductase (NifH) occurs in response to addition of ammonium to the extracellular medium and is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG). The P(II) proteins GlnB and GlnZ have been implicated in regulation of DraT and DraG by an as yet unknown mechanism. Using pull-down experiments with His-tagged versions of DraT and DraG we have now shown that DraT binds to GlnB, but only to the deuridylylated form, and that DraG binds to both the uridylylated and deuridylylated forms of GlnZ. The demonstration of these specific protein complexes, together with our recent report of the ability of deuridylylated GlnZ to be sequestered to the cell membrane by the ammonia channel protein AmtB, offers new insights into the control of NifH ADP-ribosylation.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|